The Computer Boys Take Over

Computers, Programmers, and the Politics of
Technical Expertise

Nathan Ensmenger

The MIT Press
Cambridge, Massachusetts
London, England

)




© 2010 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

For information about special quantity discounts, please email special_sales
@mitpress.mit.edu

This book was set in Sabon by Toppan Best-set Premedia Limited. Printed and
bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Ensmenger, Nathan, 1972~
The computer boys take over : computers, programmers, and the politics of
technical expertise / Nathan Ensmenger.
p. cm.~—(History of computing)
Includes bibliographical references and index.
ISBN 978-0-262-05093-7 (hardcover : alk. paper)
1. Computer programming. 2. Computer programmers. 3. Software
engineering—History. 4. Computer software—Development—Social aspects.
L. Title.
QA76.6.E58 2010
005.1—dc22
2009052638

10 9 8 7 6 5 4 3 2 1



2
The Black Art of Programming

When a programmer is good, he is very, very good. But when he is bad, he is

horrid.

—IBM study on programmer performance, 1968
An Unexpected Revolution

One of the great myths of the computer revolution is that nobody saw
it coming—particularly not the so-called computer experts. In one widely
repeated but apocryphal anecdote, Thomas Watson, the legendary
founder and longtime chair of the IBM Corporation, is said to
have predicted as late as 1943 a total world market for “maybe five
computers.” The story of this wildly inaccurate forecast, alternatively
attributed to Watson, the Harvard professor and computing pioneer
Howard Aiken, or the Cambridge professor of computer science Douglas
Hartree, among others, is generally mobilized as a kind of modern moral-
ity play, a cautionary tale about the dangers of underestimating the
power and rapidity of technological progress.! Similar tales (similarly
apocryphal) are told about a series of unimaginative computer industry
executives—from Digital Equipment Corporation’s Ken Olsen to
Microsoft’s Bill Gates—whose alleged lack of imagination prevented
them from fully appreciating the transformative potential of computer
technology. Such stories are a staple of popular histories of the electronic
computer, which generally privilege dramatic change—sudden, unantici-
pated, and inexorable—over continuity.

In reality, many of the predictions made by contemporaries about the
revolutionary potential of the electronic computer were, if anything,
wildly optimistic. Almost before there were any computers—functional,
modern, electronic digital stored-program computers—enthusiasts
for the new technology were confidently anticipating its influence on
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contemporary society. As early as 1948 the cybernetician Norbert Wiener
was predicting a “second industrial revolution” enabled by the electronic
computer.” A year later, the computer consultant Edmund Berkeley, in
his popular book Giant Brains; or, Machines That Think, described a
near future in which computers radically transform a broad range of
human cognitive and occupational activities, including business, law,
education, and medicine.’ Despite the fact that electronic computers were
in this period little more than glorified calculating machines, the provoca-
tive image of the computer as a “giant” or “mechanical brain” quickly
became established in the popular imagination. Within just a few years
of the introduction of the first commercial electronic computers, even
mass-market publications like Time and Newsweek were predicting the
use of computers in wide variety of commercial and scientific applica-
tions. Indeed, as Stephen Schnaars and Sergio Carvalho have recently
suggested, far from underestimating its potential, during the 1950s the
press in the United States “fell in love” with computer technology.*

In the business literature in particular, the coming computer revolu-
tion was declared boldly, widely, and repeatedly.’ The expectation was
that electronic computers would soon become an integral part of the
already large and thriving business machines industry. As Fortune maga-
zine confidently predicted in a 1952 survey of the computer industry,
“office robots” were poised to “eliminate the human element” in many
clerical operations, enabling massive gains in productivity.® While these
wild predictions might have been unsettling to U.S. office workers, they
did suggest a rapidly growing market for computer technology. At the
very least, the computer manufacturers were convinced that computers
were the wave of the future; in the early 1950s, dozens of firms—among
them such major players as IBM, GE, Burroughs, RCA, and NCR—
invested heavily in this potential new growth market.

And grow the market did. In 1950 there were only 2 electronic com-
puters in use in the United States. By 1955 there were 240. Five years
later, there were 5,400. By 19635, the grand total had grown to almost
25,000, and by 1970, 75,000.” By the end of the 1960s, electronic com-
puters and their associated peripherals formed the basis of a $20 billion
industry—an industry growing at an average rate of more than 27
percent annually. Within two decades of the development of the first
electronic digital computer, the computer industry in the United States
had emerged from nothing to become one of the largest and fastest-
growing sectors of the U.S. economy—a position that it would hold for
the next several decades.?
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Coevolving with this flourishing new information industry was a
novel species of technical professional: the computer programmer. In
1945 there were no computer programmers, professional or otherwise;
by 1967 industry observers were warning that although there were at
least a hundred thousand programmers working in the United States,
there was an immediate need for at least fifty thousand more.’
“Competition for programmers,” declared a contemporary article in
Fortune magazine, “has driven salaries up so fast that programming has
become probably the country’s highest paid technological occupation.
... Even so, some companies can’t find experienced programmers at any
price.” "’

Of all the unanticipated consequences of the invention of the elec-
tronic computer in the mid-1940s, the most surprising was the sudden
rise to prominence of the computer programmer. While the computer
revolution itself might not have been unforeseen, the role of the computer
programmer in bringing about that revolution certainly was. In all of the
pioneering computer projects of this period, for example, programming
was considered, at best, an afterthought. It was generally assumed that
coding the computer would be a relatively simple process of translation
that could be assigned to low-level clerical personnel. It quickly became
apparent that computer programming, as it came to be known, was
anything but straightforward and simple. Skilled programmers devel-
oped a reputation for creativity and ingenuity, and programming was
considered by many to be a uniquely intellectual activity, a black art that
relied on individual ability and idiosyncratic style. By the beginning of
the 1950s, however, programming had been identified as a key compo-
nent of any successful computer installation. By the early 1960s, the
“problem of programming” had eclipsed all other aspects of commercial
computer development. As the electronic computer increasingly moved
out of the laboratory and into the marketplace, the centrality of pro-
gramming—and programmers—became even more apparent.

Originally envisioned as little more than glorified clerical workers,
programmers quickly assumed a position of power within many organi-
zations that was vastly disproportionate to their official position in the
organizational hierarchy. Defined by their mastery of the highest of high
technology, they were often derided for their adherence to artisanal
practices. Although associated with the emerging academic discipline of
computer science, they were never widely considered to be either scien-
tists or engineers. Neither laborers nor professionals, they defy tradi-
tional occupational categorizations. The ranks of the elite programmers
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included both high school dropouts and ex-PhD physicists. Even to this
day, their occupational expertise remains difficult to clearly define or
delineate. For example, the term programmer, which was widely used as
a generic catchall description of a computing specialist in the 1960s,
encompasses such a wide range of occupational categories—from the
narrow and highly technical coder to the elite and influential “systems
man”——that it is more useful as a rhetorical device than as an analytic
category.

The questions of what programming was—as an intellectual and
occupational activity—and where it fit into traditional social, academic,
and professional hierarchies, were actively negotiated during the decades
of the 1950s and 1960s. Programmers were well aware of their tenuous
professional position, and they struggled to prove that they possessed
a unique set of skills and training that allowed them to lay claim to
professional autonomy. This chapter traces the history of computer
programming from its origins as low-status clerical work (often per-
formed by women) into one of the highest-paid technical occupations of
the late 1950s and early 1960s. The focus is on the emergence of the
computer programmer as a highly valued, well-compensated, and largely
autonomous technical expert.

The Origins of Computer Programming

In the eyes of a computer scientist, all computers are created equal. That
Is to say, any true computing machine can, by definition, compute any-
thing that is computable. Or to state the case a little more clearly, any
device worthy of the name computer can be programmed to perform
any task that can be performed by any other computer. This means that
in theory at least, all computers are functionally equivalent: any given
computer is but a specific implementation of a more general abstraction
known as a Universal Turing Machine.

It is the Platonic ideal of the Universal Turing Machine, and not the
messy reality of actual physical computers, that is the true subject of
modern theoretical computer science; it is only by treating the computer
as an abstraction, a mathematical construct, that theoretical computer
scientists lay claim to their field being a legitimate scientific, rather than
merely a technical or engineering, discipline. The story of this remarkable
self-construction and its consequences is the subject of chapter $.

The idealized Universal Turing Machine is, of course, only a concep-
tual device, a convenient fiction concocted by the mathematician Alan
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Turing in the late 1930s as a means of exploring a long-standing puzzle
in theoretical mathematics known as the Entscheidungsproblem. In order
to facilitate his exploration, Turing invented a new tool, an imaginary
device capable of performing simple mechanical computations. Each
Turing Machine, which consisted of only a long paper tape along with
a mechanism for reading from and writing to that tape, contained a table
of instructions that allowed it to perform a single computation. As a
computing device, the Turing Machine is deceptively simple; as a con-
ceptual abstraction, it is extraordinarily powerful. As it turns out, the
table of instructions for any Turing Machine can be rewritten to contain
the instructions for building any other Turing Machine. The implication,
as articulated in the Church-Turing thesis, is that every Turing Machine
is a Universal Turing Machine, and by extension, every computing
machine is essentially equivalent.

In the real world, the appealingly egalitarian abstractions of the
Church-Turing thesis quickly break down in the face of the temporal
and spatial constraints of the physical universe. To implement even the
simplest computations on an archetypal paper tape-based Turing
Machine, for example, would require an enormous and prohibitive
amount of resources. In fact, the figures involved quickly become absurdly
Saganesque: the number of miles of paper tape required would be more
than the total number of atoms in the universe, and the amount of time
required would be more than all of known cosmological history. To the
emerging discipline of theoretical computer scientists, perhaps, none of
these practical realities were particularly significant. But to working
computer engineers and programmers, such constraints were a daily
reality, even in the era of electronic computing. Extracting acceptable
performance and reliability out of the early electronic computers required
an enormous degree of messy tinkering, local knowledge, and idiosyn-
cratic technique. The developing tension between the messy tinkering of
real-world computing and the clean abstractions of academically minded
computer scientists would come to define one of the sharp divides within
the ranks of the larger computing community. The struggle between
theory and practice would become a major challenge for academics and
practitioners alike, and would reflect itself in the structure of program-
ming languages, professional societies, and academic curricula.

Conventional histories of computer programming tend to conflate
programming as a vocational activity with computer science as an aca-
demic discipline. In many of these accounts, programming is represented
as a subdiscipline of formal logic and mathematics, and its origins are
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identified in the writings of early computer theorists Alan Turing and
John von Neumann. The development of the discipline is evaluated in
terms of advances in programming languages, formal methods, and
generally applicable theoretical research. This purely intellectual approach
to the history of programming, however, conceals the essentially craftlike
nature of early programming practice. The first computer programmers
were not scientists or mathematicians; they were low-status, female
clerical workers and desktop calculator operators. The origins of pro-
gramming as a profession lie in the commercial traditions of machine-
assisted, manual computation, not in the mainstream of theoretical
mathematics.

The history of vocational computer programming begins, in the United
States at least, with the construction of the ENIAC in summer 1945.
Many historians have identified the ENIAC as the first true electronic
computer. The question of “which was the first computer” is surprisingly
difficult to answer. As Michael Williams suggests in a recent volume
edited by Raul Rojas and Ulf Hashagen called The First Computers (note
the crucial use of the plural), any particular claim to the priority of
invention must necessarily be heavily qualified: if you add enough adjec-
tives you can always claim your own favorite."! And indeed, the ENIAC
has a strong claim to this title: not only was it digital, electronic, and
programmable (and therefore looked a lot like a modern computer) but
the ENIAC designers—John Mauchly and J. Presper Eckert—went on to
form the first commercial computer company in the United States. The
ENIAC and its commercial successor, the UNIVersal Automatic Computer
(UNIVAC), were widely publicized as the first of the “giant brains” that
presaged the coming computer age. But even the ENIAC had its precur-
sors and competitors. For example, in the 1930s, a physicist at Iowa
State University, John Atanasoff, had worked on an electronic computing
device and had even described it to Mauchly. Others were working on
similar devices. During the Second World War in particular, a number
of government and military agencies, both in the United States and
abroad, had developed electronic computing devices, many of which also
have a plausible claim to being if not the first computer, then at least a
first computer.

There are two major innovations in computing that the ENIAC
embodied. The first was that it was electronic. Earlier computing devices,
including tabulating machines, were either mechanical or electrome-
chanical, meaning that they contained numerous moving parts. These
moving parts were complicated to manufacture, difficult to maintain,
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and above all relatively slow. By replacing them with completely elec-
tronic components, Eckert and Mauchly were able to dramatically speed
up the process of computation. Whereas the electromechanical Harvard
Mark I (completed in 1943), which was of similar complexity to the
ENIAC, could perform 2 or 3 additions per second, and a multiplication
every six seconds, the ENIAC (completed just three years later) could
perform 5,000 additions per second, or 333 multiplications. Although
this extraordinary improvement in performance came at the price of
increased cost and complexity—when completed the ENIAC weighed
nearly thirty tons, occupied an entire room, and required more than
eighteen thousand expensive and unreliable vacuum tubes—by the end
of the 1940s it was clear that electronic computing was the wave of
the future.

The second revolutionary feature of the ENIAC was its ability to be
programmed. This meant that the machine could be reconfigured to
perform different types of computation. In the case of the ENIAC the
machine had to be physically wired, or “set up,” as the process was
called at the time, to compute specific functions—a complicated process
that could take as long as two days.'? Within a short time, however, the
ENIAC was modified to allow it to be “programmed” automatically
using punch cards.” In the meantime, the physicist and mathematician
von Neumann had published his now-infamous First Draft of a Report
on the EDVAC, which provided a description of the computer that was
to be heir to the ENIAC." This successor machine, which was called the
Electronic Discrete Variable Automatic Computer (EDVAC), was the
world’s first stored-program computer. Unlike previous programmable
machines, the EDVAC stored-program computer did not distinguish
between data and instructions. This allowed it to modify its own instruc-
tions, which effectively allowed the computer to program itself. This not
only allowed for greater flexibility in programming but also paved the
way for the development of assemblers, compilers, and other program-
ming tools. The concept of the stored-program computer was so signifi-
cant that it has come to define the essence of the modern computer; today
a device is only considered to be a true computer if it is a stored-program
machine.

And this is what brings us back to the centrality of software to the
history of computing: it was not so much the original invention of the
electronic computer that launched the computer revolution but the later
discovery that such computers could be made programmable. To be sure,
prior to the electronic computer there were machines that could be
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controlled automatically. A Jacquard loom, for instance, used a series of
steel cards, as many as twenty thousand at a time, to control the weaving
of patterns on fabric.”* Tabulating machines could also be programmed
to a certain degree by rewiring their components. But the combination
of speed and flexibility provided by the combination of an electronic
digital computer and well-designed software was unprecedented. The
electronic digital computer would eventually become a universal machine
whose potential applications were limited only by the imagination of its
programmers.

Therein lies the rub: the very aspect of electronic computing that made
it so powerful and appealing was the aspect of least interest to its original
designers. Computer programming began as little more than an after-
thought in most of the pioneering wartime electronic computing projects,
an offhand postscript to what was universally regarded as the much more
pressing challenge of hardware development.

There were certainly legitimate reasons for privileging hardware
over software; simply managing to keep the early electronic computers
running without failure for more than a few minutes was an engi-
neering challenge of heroic proportions. As was mentioned earlier,
the core computational units of the ENIAC machine relied on more
than eighteen thousand vacuum tubes, each of which had an average
lifespan of just three thousand hours. This meant that statistically speak-
ing, six of these tubes would fail every hour; or in other words, at least
one tube failed every ten minutes. Figuring out how to control the rate
of failure of vacuum tubes was one of the great contributions of the
ENIAC’s brilliant chief engineer, J. Presper Eckert. Similarly, the con-
struction of mercury delay lines, which were an early form of short-term
memory used in the Cambridge University EDSAC, the world’s first
working stored-program computer, required the precise coordination of
acoustical waves moving at 1,450 meters per second. There is no ques-
tion that overcoming the engineering challenges posed by the electronics
of electronic computing was essential to the further development of
computer technology.

But solving the programming hurdles was equally vital. Although in
the decades after the ENIAC we have come to regard the electronic
computer as an almost infinitely protean and useful machine, this is
largely a reflection of the successes of software. In the immediate postwar
period even programmable computers like the ENIAC were considered
impressive but limited. It was not hard to imagine that the military and
the government might have a need for a small number of such devices,
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yet few would have predicted how rapidly the commercial market for
computers would expand over the course of the next decade.

“Glorified Clerical Workers”

The low priority given to programming was reflected in who was assigned
to the task. Although the ENIAC was developed by academic researchers
atthe University of Pennsylvania’s Moore School of Electrical Engineering,
it was commissioned and funded by the Ballistics Research Laboratory
(BRL) of the U.S. Army. Located at the nearby Aberdeen Proving Grounds,
the BRL was responsible for the development of the complex firing tables
required to accurately target long-range ballistic weaponry. Hundreds of
these tables were required to account for the influence of highly variable
atmospheric conditions (air density, temperature, etc.) on the trajectory
of shells and bombs. Prior to the arrival of electronic computers, these
tables were calculated and compiled by teams of human “computers”
working eight-hour shifts, six days a week. From 1943 onward, essen-
tially all of these computers were women, as were their immediate super-
visors. The more senior women (those with college-level mathematical
training) were responsible for developing the elaborate “plans of compu-
tation” that were carried out by their fellow computers.

In June 1945, six of the best human computers at Aberdeen were hired
by the leaders of the top secret “Project X”—the U.S. Army’s code name
for the ENIAC project—to set up the ENIAC machine to produce bal-
listics tables. Their names were Kathleen McNulty, Frances Bilas, Betty
Jean Jennings, Elizabeth Snyder Holberton, Ruth Lichterman, and
Marlyn Wescoff. Collectively they were known as “the ENIAC girls.”*
Today the ENIAC girls are often considered the first computer program-
mers. In the 1940s, they were simply called coders.

The use of the word coder in this context is significant. At this point
in time the concept of a program, or of a programmer, had not yet been
introduced into computing. Since electronic computing was then envi-
sioned by the ENIAC developers as “nothing more than an automated
form of hand computation,” it seemed natural to assume that the primary
role of the women of the ENTAC would be to develop the plans of com-
putation that the electronic version of the human computer would
follow.'” In other words, they would code into machine language the
higher-level mathematics developed by male scientists and engineers.
Coding implied manual labor, and mechanical translation or rote tran-
scription; coders were obviously low on the intellectual and professional
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status hierarchy. It was not until later that the now-commonplace title
of programmer was widely adopted. The verb “to program,” with its
military connotations of “to assemble” or “to organize,” suggested a
more thoughtful and system-oriented activity.'® Although by the mid-
1950s the word programmer had become the preferred designation, for
the next several decades programmers would struggle to distance them-
selves from the status (and gender) connotations suggested by coder.

The first clear articulation of what a programmer was and should be
was provided in the late 1940s by Goldstine and von Neumann in a
series of volumes titled Planning and Coding of Problems for an Electronic
Computing Instrument. These volumes, which served as the principal
(and perhaps only) textbooks available on the programming process at
least until the early 1950s, outlined a clear division of labor in the pro-
gramming process that seems to have been based on the practices used
in programming the ENIAC. Goldstine and von Neumann spelled out a
six-step programming process: (1) conceptualize the problem mathemati-
cally and physically, (2) select a numerical algorithm, (3) do a numerical
analysis to determine the precision requirements and evaluate potential
problems with approximation errors, (4) determine scale factors so that
the mathematical expressions stay within the fixed range of the computer
throughout the computation, (5) do the dynamic analysis to understand
how the machine will execute jumps and substitutions during the course
of a computation, and (6) do the static coding. The first five of these
tasks were to be done by the “planner,” who was typically the scientific
user and overwhelmingly was frequently male; the sixth task was to be
carried out by coders. Coding was regarded as a “static” process by
Goldstine and von Neumann—one that involved writing out the steps
of a computation in a form that could be read by the machine, such as
punching cards, or in the case of the ENIAC, plugging in cables and
setting up switches. Thus, there was a division of labor envisioned that
gave the highest-skilled work to the high-status male scientists and the
lowest-skilled work to the low-status female coders.

As the ENIAC managers and coders soon realized, however, control-
ling the operation of an automatic computer was nothing like the process
of hand computation, and the Moore School women were therefore
responsible for defining the first state-of-the-art methods of program-
ming practice. Programming was an imperfectly understood activity in
these early days, and much more of the work devolved on the coders
than anticipated. To complete their coding, the coders would often have
to revisit the underlying numerical analysis, and with their growing skills,
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some scientific users left many or all six of the programming stages to
the coders. In order to debug their programs and distinguish hardware
glitches from software errors, they developed an intimate knowledge of
the ENIAC machinery. “Since we knew both the application and the
machine,” claimed ENIAC programmer Betty Jean Jennings, “as a result
we could diagnose troubles almost down to the individual vacuum tube.
Since we knew both the application and the machine, we learned to
diagnose troubles as well as, if not better than, the engineers.””” In a few
cases, the local craft knowledge that these female programmers accumu-
lated significantly affected the design of the ENIAC and subsequent
computers. ENIAC programmer Betty Holberton recalled one particu-
larly significant episode:

In the fall of ‘46 when the new idea of wiring up the ENIAC with sort of semi-
permanent wiring with instruction codes [emerged] . . . a number of us worked
with Dr. von Neumann in setting up this code. . . . We felt we wouldn’t need
that many settings for all of the instructions. We sort of worked along for a
while. But to my astonishment, he never mentioned a stop instruction. So I did
coyly say, “Don’t we need a stop instruction in this machine?” He said, “No we
don’t need a stop instruction. We have all these empty sockets here that just let
it go to bed.” And I went back home and I was really alarmed. After all, we had
debugged the machine day and night for months just trying to get jobs on it.

So the next week when I came up with some alterations in the code, I
approached him again with the same question. He gave me the same answer.
Well I really got red in the face. I was so excited and I really wanted to tell him
off. And I said, “But Dr. von Neumann, we are programmers and we sometimes
make mistakes.” He nodded his head and the stop order went in.?

The deference with which Holberton proposes her tentative suggestion
and von Neumann’s initial patronizing dismissal are indicative of the
status of the programmers relative to that of their scientific and engineer-
ing colleagues. Von Neumann’s eventual acceptance reflects his recogni-
tion of the importance of local craft knowledge and an increasing
acceptance of the value of programming expertise. Given that the pro-
grammers “were often able to point out to a technician which individual
vacuum tube needed to be changed,” they were able to interact much
more with the computer engineers and technicians than was probably
originally intended. This had the positive effect of convincing the ENIAC
managers that programmers were essential to the success of the overall
project and that well-informed, technically proficient, high-quality pro-
grammers were especially indispensable.

Thus, what was supposed to have been a low-level skill, a static activ-
ity, prepared these women coders well for careers as programmers, and
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indeed, those who did pursue professional careers in computing often
became programmers and thrived at it. A few women, Grace Hopper
and Betty Holberton of UNIVAC as well as Ida Rhodes and Gertrude
Blanche of the National Bureau of Standards in particular, continued to
serve as leaders in the programming profession. But despite the success
of the ENIAC women in establishing a unique occupational niche for
the programmer within the ENIAC community, programming continued
to be perceived as marginal to the central business of computer develop-
ment. By nature of their gender (female) and education (nonscientific and
nonengineering), the early programmers remained isolated from their
engineering and scientific managers. If software was admitted to be
important, hardware was considered to be essential.

The conflation of programming and coding, and the association of
both with low-status clerical labor, indicated the ways in which early
software workers were gendered female. In the ENIAC project, of course,
the programmers actually were women. In this respect programming
inherited the gender identity of the human computing projects in which
it originated. But the suggestion that coding was low-status clerical work
also implied an additional association with female labor. As Margery
Davies, Sharon Strom, and Elyce Rotella have described, clerical work
had, by the second decade of the twentieth century, become largely
feminized.”" This was particularly true of clerical occupations that were
characterized by the rigid division of labor and the introduction of new
technologies. Some of these occupations carried over directly into the
computer era: the job of keypunch operator, for example, had been
thoroughly feminized long before it became associated with electronic
data processing.”> And although today we do not associate the work
of keypunchers with the work of the computer programmer, in the
1950s and 1960s the differentiation between keypunch operators and
other forms of computer work was not always clear. In any case, the
historical pattern of the nineteenth and twentieth centuries has been that
low-status occupations, with the exception of those requiring certain
forms of physical strength, have often become feminized. In terms of the
ENIAC, for example, the telephone switchboardlike appearance of the
ENIAC programming cable-and-plug panels reinforced the notion that
programmers were mere machine operators, that programming was
more handicraft than science, more feminine than masculine, more
mechanical than intellectual. The programmer/coder continued to
occupy an uncertain position within the nascent association of computer
professionals.
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Throughout the next several decades programmers struggled to dis-
tance themselves from the status (and gender) connotations suggested by
coder. An early manuscript version of the UNIVAC Introduction to
Programming manual, for instance, highlighted the distinction between
the managerial programmer and the technical coder: “In problem prepa-
ration, the detailed work may be accomplished by two individuals. The
first, who may be called the ‘programmer,” studies the problem, deter-
mines the appropriate method of solution, and prepares the flow chart.
This person must be well versed in the particular field in which the
problem lies, and should also be able to fully exploit the flexibility and
versatility of the UNIVAC system. The second person, referred to as the
‘coder,” need only be familiar with the technique of reducing the flow
chart to the specific instructions, or coding, required by the UNIVAC to
solve the problem.”* By differentiating between these two tasks, one
clerical and the other analytic, the manual reinforced the Goldstine and
von Neumann model of the programmer. In this model the real business
of programming was analysis: the actual coding aspect of programming
was trivial and mechanical. “Problems must be thoroughly analyzed to
determine the many factors that must be taken into consideration,” sug-
gested the same preliminary UNIVAC manual, but once this analysis had
been completed, the “pattern of the [programming] solution would be
readily apparent.” Although this division of the programming process
into two distinct and unequal phases did not survive into the published
version of the UNIVAC documentation, its early inclusion highlighted
the persistence of the programmer/coder distinction.

The Art of Programming

Although they continued to struggle with questions of status and iden-
tity, by the end of the 1950s computer programmers were generally
considered to be anything but routine clerical workers. A Price Waterhouse
report from 1959 titled Business Experience with Electronic Computers
argued that “high quality individuals are the key to top grade program-
ming. Why? Purely and simply because much of the work involved is
exacting and difficult enough to require real intellectual ability and above
average personal characteristics.”** In fact, the study’s authors observed
that “the term ‘programmer’ is . . . unfortunate since it seems to indicate
that the work is largely machine oriented when this is not at all the
case. . . . [T]raining in systems analysis and design is as important to a
programmer as training in machine coding techniques; it may well
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become increasingly important as systems get more complex and coding
becomes more automatic.”” Although Goldstine and von Neumann had
envisioned a clear division of labor between planners and coders, in
reality this boundary became increasingly indistinct. The clear implica-
tion of recent experience, in both scientific computation and business
data processing, was that programmers should be given more responsi-
bility for design and analysis, the idea that coding could be left to less-
experienced or lower-grade personnel was “erroneous,” and “the human
element is crucial in programming.”* Indeed, by the mid-1950s, a new
model for programming had emerged that emphasized individual exper-
tise and creativity. During this period computers remained a primarily
scientific and military technology, and computer programming as a dis-
cipline retained a close association with the practice of mathematics. The
limitations of early hardware devices usually meant that a simple pro-
gramming problem could quickly turn into a research excursion into
algorithm theory and numerical analysis. Computer programmers devel-
oped a reputation for creativity and ingenuity. Contemporary storage
devices were so slow and had such little capacity that programmers had
to develop great skill and craft knowledge to fit their programs into the
available memory space. As John Backus (the IBM researcher best known
as the inventor of the FORTRAN programming language) would later
describe the situation, “Programming in the 1950s was a black art, a
private arcane matter. . . . [E]ach problem required a unique beginning
at square one, and the success of a program depended primarily on the
programmer’s private techniques and inventions.”?’

The notion that programming was a black art pervades the literature
from this period. There are several reasons why programming was so
difficult. To begin with, the programmer had to develop an algorithm
suitable to the problem at hand. Since the primary purpose of the
earliest computers was to produce solutions to complex mathematical
functions that could not be solved analytically, these programs necessar-
ily required skill in numerical analysis. Numerical analysis is the set of
tools that mathematicians have developed to provide approximate solu-
tions to otherwise-insoluble equations. This process of analysis was itself
something of an art form: numerical solutions always involved a
compromise between speed and accuracy—even when using the fastest
computers. Choosing the right approximation required the programmer
to balance acceptable error against the specific limitations of a given
machine.
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broad enough for
science fiction,

look into RCA. You’re our kind of person.

You probably think far ahead
of your time. -

You want to take software ou
of its infancy. Into the 4th, 5th
and 6th generations.

You want a chance to
influence hardware design,
instead of the other way around.

You want a variety of projects
with definite objectives, instead
of an endless task.

Figure 2.1
RCA advertisement, 1962.

You want challenging work
and inspiring rewards.

if this is what you're looking
for, find it at RCA.

Write to us if you've had
experience in language
processors, operating
systems, utility systems or
communications systems.

We also have openings in
Sales, Field Systems Support,

and sufficiently
precise to enjoy
the esoteric
language of the
computer,

and Product Planning and
Engineering.

Contact Mr. J. C. Riener,
Dept. D-11, RCA Information
Systems Division, Bldg. 202-1,
Cherry Hill, New Jersey 08101,
We are an equal opportunity
employer.
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For problems that were not mathematical in nature, developing
an appropriate algorithm could be even more challenging. This was a
particular problem for the corporate users of computers. Even the sim-
plest business activities can be difficult, if not impossible, to describe in
terms of the limited instruction set understood by a computer.
Programmers first had to thoroughly understand the activity in question,
including all of its exceptional cases, imprecise terms, and potential
errors. Not only was this process inherently difficult but it also frequently
involved social and analytic skills foreign to the average programmer.
“Because the background of the early programmers was acquired mainly
in mathematics or other scientific fields, they were used to dealing with
well-formulated problems and they delighted in a sophisticated approach
to coding their solutions,” noted the Price Waterhouse report. “When
they applied their talents to the more sprawling problems of business,
they often tended to underestimate the complexities and many of their
solutions turned out to be oversimplifications. Most people connected
with electronic computers in the early days will remember the one- or
two-page flow charts which were supposed to cover the intricacies of the
accounting aspects of a company’s operations.””® Most companies
attempted to differentiate the more social and organizational processes
essential to algorithm development, often referred to as system analysis,
from the more technical procedures associated with programming.
Inevitably the two would bleed into one another, however.””

Even after a suitable algorithm had been selected, the process of
transforming that algorithm into a form that could be understood by a
computer was challenging. Most electronic computers represented
numbers internally in binary form, and so conversion routines from
decimal to binary (and back) had to be developed. If the machine was a
fixed-point machine, all of the numbers also scaled to stay within the
bounds of the fixed-point arithmetic units. Since in a stored-program
computer both programs and data were stored in the same memory, it
was possible to confuse the two and create strange errors that were
almost impossible to trace. Most of these machines had limited debug-
ging capabilities (if any) and complicated mechanisms for accessing
subroutine libraries. Programmers had to use obscure techniques to
optimize for size rather than for legibility or ease of maintenance due
to the limited amount of available memory. In order to coax every
bit of speed out of a relatively slow storage device such as a rotating
memory drum, programmers would carefully organize their coded
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instructions in such a way as to assure that each instruction passed
by the magnetic read head in just the right order and at just the right
execution time.”® Only the best programmers could hope to develop
applications that worked at acceptable levels of usability and perfor-
mance. They had to cultivate a series of idiosyncratic and highly indi-
vidual craft techniques designed to overcome the limitations of primitive
hardware.*!

In his memoir describing “Programming in America in the 1950s,”
John Backus offered an especially detailed example of the many ways in
which a programmer project could run into problems:

Some idea of the machine difficulties facing early programmers can be had by a
brief survey of a few of the bizarre characteristics of the Selective Sequence
Electronic Calculator (SSEC).

This vast machine (circa 1948-1952) had a store of 150 words; instructions,
constants, and tables of data were read from punched tapes the width of a
punched card; the ends of an instruction tape were glued together to form a
paper loop, which was then placed on one of 66 tape-reading stations. The SSEC
could also punch intermediate data into tapes that could subsequently be read
by a tape-reading station.

One early problem strained the SSEC’s capacity to the limit. The computation
was divided into three phases; in the first phase a tape of many yards of inter-
mediate results was punched out; during the second phase this tape was glued
into a loop and mounted on a tape-reading station so that in the third phase it
could be read many times.

The problem ran successfully through many cycles of these three phases, but
then a mysterious error began to appear and disappear regularly in the third
phase. For a long time no one could account for it.

Finally, the large pile of intermediate data tape was pulled from the bin below
its reading station and a careful inspection revealed that it had been glued to
form a Mobius strip rather than a simple loop. The result was that on every
second revolution of the tape each number would be read in reverse order.*

As this anecdote suggests, writing programs under these constraints was
a time-consuming and error-prone process. One the oldest-surviving
computer programmers, a 126-line debugging tool developed for the
Cambridge EDSAC machine (notable as being the first working stored-
program computer in the world) was recently discovered to have con-
tained more than twenty errors.*® Because the author of the program,
the mathematical physicist Maurice Wilkes, literally wrote the book on
computer programming in the early 1950s (his 1951 Preparation of
Programs for an Electronic Digital Computer is considered the first
widely available textbook on programming), we can assume that this
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was not an unrepresentative example.** As Wilkes later recalled in his
memoirs, early on in the life of the EDSAC, its programmers had “begun
to realize that it was not so easy to get a program right as had at one
time appeared.” It was with some shock and dismay that he himself
realized that “a good part of the remainder of my life was going to be
spent in finding errors in my own programs.”® The tedious process of
identifying and removing these errors, known as “debugging,” was time-
consuming, difficult, and intellectually unfulfilling. As much as one-half
of the budget of a large programming project could be spent on testing
and debugging—activities that were perceived as being low-status and
unpleasant.*

As will be described in subsequent chapters, improvements in com-
puter hardware along with the development of compilers and other
programming utilities would help alleviate some of the challenges associ-
ated with coding. But as many FORTRAN and COBOL programmers
would soon realize, the dull and mechanical aspects of software develop-
ment did not disappear with the advent of compilers and automatic
programming languages. Nor did the intellectual challenges associated
with analysis and design. Mistakes were inevitable, even from the most
proficient of programmers. In one widely recited and tragic (and possibly
apocryphal) example, a minor transcription error in control software for
the Mariner I probe to Venus caused the spacecraft to veer off-course
four minutes after takeoff, forcing NASA to destroy it remotely. The
mistake that the programmer allegedly made was to replace the
FORTRAN statement

DO 31=1,3
with
DO3I=1.3

Instead of looping through a series of statements, as the code in the first
version would have required, the latter form was interpreted by the
FORTRAN compiler as the assignment of a variable. That the loss of
the Mariner I could be caused by such a seemingly trivial error high-
lighted for many observers the central importance of employing only the
most skilled programmers.’” This perception holds true regardless of
whether or not the Mariner I anecdote is factually accurate. During the
late 1950s and 1960s such stories of software-related disaster were a
staple of the popular press, and helped set the state for the emergence
of a full-blown software crisis in the late 1960s.
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Building Castles in the Air

In describing his experiences as the project manager of the single-largest
and most expensive software development effort ever undertaken in the
history of the IBM Corporation, the noted computer scientist Frederick
Brooks provided a curiously literary portrayal of the computer program-
mer: “The programmer, like the poet, works only slightly removed from
pure-thought stuff. He builds his castles in the air, from air, creating by
exertion of the imagination.”?

That a technical manager in a conservative corporation should use
such lofty language in reference to such a seemingly prosaic occupation
like programming is striking yet not unusual. But Brooks meant his liter-
ary metaphors to be taken seriously. Even more so than the poet, he
argued, the programmer worked in the medium of the imagination, using
words to bring to life grand conceptual structures. In fact, in the case of
the programmers the relationship between words and reality was almost
magical: “One types the correct incantation on a keyboard, and a display
screen comes to life, showing things that never were nor could be.” And
like the magical incantation, the computer program demanded perfec-
tion: “If one character, one pause, of the incantation is not strictly in
proper form, the magic doesn’t work.” This is what made programming
so difficult, he suggested: “Human beings are not accustomed to being
perfect, and few areas of human activity demand it. Adjusting to the
requirement for perfection is, I think, the most difficult part of learning
to program.”?

Like many of his contemporaries, Brooks was struggling to under-
stand why software development projects seemed almost impossible
to manage using conventional management techniques. In the late
1960s, Brooks had been the manager of the IBM 0$/360 development
project. The OS/360 operating system was the cornerstone of IBM’s
larger System/360 strategy, which consolidated IBM’s computer product
lines into a single range of hardware- and software-compatible machines.
Although the System/360 turned out to be a tremendous success for
IBM, it had almost been derailed by problems with the development
of 0OS/360. In the years between 1963 and 1966, over five thousand
staff years of effort went into the design, construction, and documenta-
tion of OS/360. When it was finally delivered in 1967, nine months
late and riddled with errors, it had cost the IBM Corporation half a
billion dollars—four times the original budget, and the single-largest
expenditure in company history. And according to Brooks, the personal
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Do you know what it means to find and care for

LR}

a good programmer, and keep him happy?

Or maybe a couple of him (or her)?

‘They don’t grow in labs.

They're an unusual breed.

Practically speaking, a profession.

It’s not easy o tell who'll be a good

programmer. Or who won’t. Geniug or

plodder, once they're in the business,

something within them comes out.

‘We bring it out.

Good programmers often come to us

becanse we give them the company of

50 many others from whom they will

learn.

And place them in one of our centers

where they’ll be happiest. And give

them Jots of training and experience.

And give them IBM computers to work

with. The 1620, the 1401, the 7094, and
soon the System/360. The latest. The

small ones for small problems. The big

Figure 2.2

ones for big problems.

And a team of technicians who can run
them. And seldom waste a second.
They love to tackle matters like numer-
ical control, multicomponent distilia-
tion, Type I structural steel frame
specification, refinery operations fore-

Ko it salves problems faster. Cheaper.
In the data processing business, it's
coup when one company gets such
programmer.

Over 12,000 SBC customers know what
we mean, :
They know that the difference between

casting, urban portation

piping flexibility, rocket fuel evalua-
tion, hydraulic network analysis, ther-
mochemical equilibrium, supermarket
chain and department store operations,
high-rise apartment and industrial
plant construction.

They get a thrill from Linear Program-
ming and eritical path scheduling
(perT) and generalized interrelated
flow simulation {(c1¥s).

They get their triumphs from giving the
computer a program with fewer steps.

Service Bureau Corporation advertisement, 1964.

p services in this day and age
of data processing machines

is people.

Can SBC help you? How much does
cost? There's a way to find out quickl
Your Yellow Pages. “Data Processing
Services.” There we are,

Service Bureau Corporation
Computing Sciences Divish
425 Park Avenue

® New York, N.Y, 18022
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toll that OS/360 took on IBM’s software personnel was perhaps even
more significant.

The highly publicized failure of the OS/360 project served as a dra-
matic illustration of the shortcomings of the traditional management
methods in software development. It was in The Mythical Man-Month,
his postmortem analysis of the OS/360 disaster, that Brooks first com-
pared programming to poetry. His larger point was that computer pro-
gramming, as an inherently artistic activity, was resistant to most forms
of industrial production. Take, for example, his own experience with
08/360: when faced with serious schedule slippages, quality problems,
and unanticipated changes in scope, he and the other project leaders had
done what traditional manufacturing managers were accustomed to
doing, which was to add more resources. The only noticeable result was
that the project fell more and more behind schedule.

After diagnosing the disease, Brooks proposed its cure. If skilled
programmers were the sine qua non of quality software development,
they must be elevated to the center of the production process. The
remainder of The Mythical Man-Month is an attempt to figure out
how to harness the power of highly artistic programmer/poets to the
demands of industrial-strength software development. The development
methodology that Brooks outlined was never widely adopted in industry,
but his larger argument about the inherently creative nature of program-
ming was. The Mythical Man-Month quickly became one of the most
widely read and oft-quoted references on the practice of software
development.

There is no doubt that in the formative years of commercial computing,
there was widespread dissension within the programming community
over the goals and direction of the programming profession. Computer
scientists, corporate employers, and vocational programmers disagreed
about the proper relationship between formal and idiosyncratic tech-
nique, local knowledge and generally applicable theory. What was largely
agreed on, however, was that in the early 1960s, programming was “not
yet a science, but an art that lacks standards, definitions, agreement on
theories and approaches.” This popular perception of computer pro-
gramming as a poorly understood, idiosyncratic, and creative process
defined the discipline as it emerged in the 1950s, and continues to influ-
ence the culture and practice of programming even today. The notion
that programming was an art served as both a resource and a source of
much anxiety and discomfort for programmers.
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For all of these reasons and more, programming in the 1950s acquired
a reputation for being incomprehensible to all but a small set of extremely
talented insiders. As John Backus would later describe it, “Each [pro-
gramming] problem required a unique beginning at square one, and the
success of a program depended primarily on the programmer’s private
techniques and invention.”*! Techniques developed for one application
or installation could not be easily adapted for other purposes. There were
few useful or widely applicable tools available to programmers, and
certainly no science of programming. Programmers often worked in
relative isolation, and had few opportunities for formal or even informal
education. They generally perceived little value in the work going on
at other firms or laboratories, as it was equally haphazard and
idiosyncratic. They placed great emphasis on local knowledge and indi-
vidual ability.

The widespread perception that programming was a black art per-
vades the industry and technical literature of the 1950s and 1960s.*?
Even today, more than a half century after the invention of the first
electronic computers, the notion that computer programming still retains
an essentially artistic character is still widely accepted.** Whether or not
this is desirable is an entirely different question—one that remains a
subject of considerable and contentious debate. What is important for
the purposes of this book is the various ways in which the language of
art, aesthetics, and craft is used throughout the history of computing to
elevate, denigrate, or castigate programmers and other software special-
ists. By characterizing the work that they did as artistic, programmers
could lay claim to the autonomy and authority that came with being an
artist. If it were true, as one industry observer suggested in the late 1960s,
that “generating software is ‘brain business,” often an agonizingly diffi-
cult intellectual effort,” then talented programmers were effectively irre-
placeable, and should be treated and compensated accordingly.*

On the other hand, being artistic might also imply that one was not
scientific or professional. One common usage of the word art, of course,
is in reference to the visual, literary, or performing arts. In this context,
describing programmers as artists implied that they were might be non-
conformist, unreliable, or eccentric—not traits likely to endear them to
straitlaced corporate managers. Although some programmers (and man-
agers) did apply this meaning of the word art to programming—Brooks
used a “programmers as poets” metaphor—for the most part the word
was used in its more traditional association with craft technique and
preindustrial forms of production.** When participants at the NATO
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Conference on Software Engineering in 1968 portrayed computer
programming as being “too artistic,” they was using the word in this
latter sense, as a rhetorical device for contrasting its “backward” craft
sensibilities with “the types of theoretical foundations and practical
disciplines” that they believed characterized “the established branches
of engineering.”* Note that the appeal here is to the tradition of the
artisan or craftsperson, which is a masculine identity, rather than to the
potentially effeminate artsy type.

For those computer programmers who also had academic aspirations,
the word art was always used in opposition to science. For them the
word suggested an undesirable lack of theoretical or mathematical rigor.
They needed to distance the more artistic practices of programming from
the more respectable discipline of computer science. This often brought
these academically minded proto—computer scientists into conflict with
working programmers, who had different professional and occupational
agendas. The differences between these agendas would come to light in
subsequent debates about programmer recruitment practices, program-
ming language adoption, and academic curriculum.
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