
V
viewpoints

36 communications of the acm | january 2014 | vol. 57 | no. 1

T
u

r
i

n
g

 P
h

o
t

o
 c

o
u

r
t

e
s

y
 o

f
 N

a
t

i
o

n
a

l
 P

o
r

t
r

a
i

t
 G

a
lle

r
y

;
P

a
pe

r

 I
m

a
g

e
 c

o
u

r
t

e
s

y
 o

f
 C

h
r

i
s

t
i

e
’s

Historical Reflections
Actually, Turing
Did Not Invent
the Computer
Separating the origins of computer science and technology.

points of Turing’s actual career. In
1936, just two years after completing his
undergraduate degree, he introduced
the concept now called the Turing Ma-
chine in a paper called “On comput-
able numbers, with an application to
the Entscheidungsproblem.” This has
since become the main abstract mod-
el of computation used by computer
scientists. During the Second World
War Turing made several vital contri-
butions as part of the British team try-

T
he 100 th anniversary of the
birth of Alan Turing was cel-
ebrated in 2012. The com-
puting community threw its
biggest ever birthday party.

Major events were organized around the
world, including conferences or festi-
vals in Princeton, Cambridge, Manches-
ter, and Israel. There was a concert in
Seattle and an opera in Finland. Dutch
and French researchers built small Tur-
ing Machines out of Lego Mindstorms
kits. Newspaper and magazine articles
by the thousands brought Turing’s life
story to the public. ACM assembled 33
winners of its A.M. Turing Award to dis-
cuss Turing’s ideas and their relation-
ship to the future of computing. Various
buildings, several roads, and at least
one bridge have been named after him.

Dozens of books with Turing’s
name in the title were published or re-
issued. Turing was so ubiquitous that
even George Dyson’s book about John
von Neumann was titled Turing’s Ca-
thedral, becoming the first book on the
history of information technology to
reach a broad audience since the one
about Nazis with punched card ma-
chines. Publishers are well aware there
is a strong audience for books about
Nazis. The public’s hunger for books
about mathematicians and computer
scientists is less acute, making Tur-
ing’s newfound commercial clout both
unlikely and heartening.

Still, as this flood of Turing-related
material begins to recede it is time to
clean up some of the rather bad smell-
ing historical claims left in our meta-
phorical basement. Column space is
short, so I will focus here on the idea
that Turing invented the computer.
Very short version: it is wrong.

In case you spent 2012 in a maxi-
mum-security prison or meditating
in a Tibetan monastery, let me briefly
summarize the computer-related high

doi:10.1145/2542504	 Thomas Haigh

Alan Turing (left); the cover page of Turing’s paper “On computable numbers, with
an application to the Entscheidungsproblem” (right).

viewpoints

january 2014 | vol. 57 | no. 1 | communications of the acm 37

V
viewpoints

of his death his interests had already
drifted away from the central concerns
of the nascent discipline.

When building a house the founda-
tion goes in first. The foundations of a
new discipline are constructed rather
later in the process. Turing’s 1936 pa-
per was excavated by others from the
tradition of mathematical logic in
which it was originally embedded and
moved underneath the developing
new field. In several papers historian
Michael S. Mahoney sketched the pro-
cess by which this body of theory was
assembled, using pieces scavenged
from formerly separate mathematical
and scientific traditions. The creators
of computer science drew on earlier
work from mathematical logic, for-
mal language theory, coding theory,
electrical engineering, and various
other fields. Techniques and results
from different scientific fields, many
of which had formerly been of purely
intellectual interest, were now rein-
terpreted within the emerging frame-
work of computer science.a Historians
who have looked at Turing’s influence
on the development of computer sci-
ence have shown the relevance of his
work to actual computers was not
widely understood in the 1940s.1,4,5

Turing’s 1936 paper was one of the
most important fragments assembled
during the 1950s to build this new in-
tellectual mosaic. While Turing him-
self did see the conceptual connection
he did not make a concerted push to
popularize this theoretical model to
those interested in computers. How-
ever, the usefulness of his work as a
model of computation was, by the end
of the 1950s, widely appreciated within
large parts of the emerging computer
science community. Edgar Daylight
has suggested that Turing’s rise in
prominence owed much to the em-
brace of his work by a small group of
theorists, including Saul Gorn, John W.
Carr, and Alan J. Perlis, who shared a
particular interest in the theory of pro-
gramming languages.3 His intellectual
prominence has been increasing ever
since, a status both reflected in and
reinforced by ACM’s 1965 decision to
name its premier award after him.

a	 See part three of Mahoney’s Histories of Com-
puting, cited in the Further Reading section at
the end of this column.

ing to decipher intercepted German
communications, which were encoded
using specialized machines and had
been thought unbreakable. Immedi-
ately after the war Turing designed an
electronic computer, the ACE, for the
National Physical Laboratory. A series
of machines based on the design were
eventually built, including one of the
first commercial computer models,
though Turing departed for the Univer-
sity of Manchester before serious con-
struction began. He worked there with
one of the earliest modern computers,
but soon turned to more abstract and
philosophical questions. Pondering the
possibility of what we would now call
artificial intelligence, Turing proposed
we should judge a computer intelligent
if someone could not reliably tell it from
a real human after conducting a typed
conversation with both. This procedure
is now called the “Turing Test.” Turing’s
career came to an abrupt end in 1954
with his death, usually attributed to
suicide following various humiliations
inflicted by the authorities after a legal
conviction for homosexuality.

That is a remarkable career by any
measure, with enough tragedy and ge-
nius to hook a broader audience and
make Turing an unlikely gay icon. I
do not have the expertise to evaluate
the common claim that Turing’s work
shortened the war by several years but
even a more cautious evaluation of the
impact of his wartime accomplish-
ments would make him a mistreated
national hero. To celebrate Turing is
therefore to celebrate freedom and
decency, as well as genius. Let’s just
make sure we do our cheering in a his-
torically responsible manner.

Retroactively Founding
Computer Science
Turing provided a crucial part of the
foundation of theoretical computer
science. There was no such thing as
computer science during the early
1950s. That is to say there were no de-
partments of computer science, no
journals, no textbooks, and no com-
munity of self-identified computer
scientists. An increasing number of
university faculty and staff were build-
ing their careers around computers,
whether in teams creating one-off com-
puters or in campus computer centers
serving users from different scientific

disciplines. However, these people had
backgrounds and appointments in dis-
ciplines such as electrical engineering,
mathematics, and physics. When they
published articles, supervised disserta-
tions, or sought grants they had to be
fit within the priorities and cultures of
established disciplines. The study of
computing always had to be justified as
a means, not as an end in itself.

Ambitious computer specialists
were not all willing to make that com-
promise and sought to build a new dis-
cipline. It was eventually called com-
puter science in the U.S., though other
names were proposed and sometimes
adopted. To win respectability in elite
research universities the new disci-
pline needed its own body of theory.
The minutiae of electronic hardware
remained the province of engineering.
Applied mathematics and numerical
analysis were tied too closely to the
computer center tradition of service
work in support of physicists and en-
gineers. Thus, the new field needed
a body of rigorous theory unique to
computation and abstracted from en-
gineering and applied mathematics.

Turing was not, in any literal sense,
one of the builders of the new disci-
pline. He was not involved with ACM
or other early professional groups, did
not found or edit any journal, and did
not direct the dissertations of a large
cohort of future computer scientists.
He never built up a laboratory, set up a
degree program, or won a major grant
to develop research in the area. His
name does not appear as the organizer
of any of the early symposia for com-
puting researchers, and by the time

I could fill many
columns doing
nothing more than
skewering ridiculous
things written about
Turing, many of them
by people who ought
to know better.

viewpoints

38 communications of the acm | january 2014 | vol. 57 | no. 1

So Who Did Invent the Computer?
This question, asked at a party, will
cause any responsible historian of
computing to blanch and mumble an
excuse before scurrying to the safety
of the drinks table. The whole way we
write and think about the computers of
the 1940s is an attempt to avoid having
to provide a single answer to that ques-
tion. Instead we award each early ma-
chine, and its main inventor(s), a meta-
phorical trophy engraved with a phrase
such as “first general-purpose automat-
ic electronic digital computer.” These
trophies adorn the figurative man-
telpieces of John Atanasoff, Konrad
Zuse, J. Presper Eckert, John Mauchly,
Tom Kilburn, Tommy Flowers, How-
ard Aiken, and Maurice Wilkes. Those
who focus on designs, rather than ac-
tual functioning machines, can and do
make the case for Charles Babbage and
John von Neumann. A colleague once
joked to me that we should identify and
honor the earliest computer never to be
claimed as the first computer.

The story behind all those “firsts”
goes like this. From the late 1930s to
the mid-1940s, a number of automatic
computing machines were built. Their
inventors often worked in ignorance of
each other. Some relied on electrome-
chanical relays for their logic circuits,
while others used vacuum tubes. Sev-
eral machines executed sequences of
instructions read one at a time from
rolls of paper tape. Thanks in part to a
series of legal battles around a patent
granted on the ENIAC these machines
dominated early discussion of the his-
tory of computing and their creation
has been well documented.

The “modern” or “stored program”
computers from which subsequent
computers evolved were defined by
two interrelated breakthroughs. On an
engineering level, computer projects
of the late 1940s succeeded or failed
based primarily on their ability to get
large, fast memories to work reliably.
The first technology proposed, by Eck-
ert who oversaw the engineering of
ENIAC at the University of Pennsylva-
nia, was the mercury delay line. Freddy
Williams, working on the computer
project at Manchester University, was
the first to successfully store bits on a
cathode ray tube. These were the two
dominant high-speed memory tech-
nologies until the mid-1950s.

On a conceptual level, the break-
through was inventing what we could
now call a computer architecture able to
take advantage of the flexibility of these
new memories. Historians agree that
the first wave of modern computers un-
der construction around the world dur-
ing the late 1940s were all inspired by
a single conceptual design, an unpub-
lished typescript cryptically titled “First
Draft of a Report on the EDVAC.” This
unfinished document summarized
discussions among the team working
on a successor to ENIAC. Its title page
named only John von Neumann as its
author, though the extent to which he
personally created the ideas within
rather than summarizing the team’s
progress has been much debated. Tur-
ing produced his own ACE design only
after reading and being influenced by
this document, though his approach
diverges in several interesting respects
from von Neumann’s.

Arguments For Turing
As historians followed this progression
of machines and ideas they found few
mentions of Turing’s theoretical work
in the documents produced during the
1940s by the small but growing com-
munity of computer creators. Turing is
thus barely mentioned in the two main
overview histories of computing pub-
lished during the 1990s: Computer by
Campbell-Kelly and Aspray, and A His-
tory of Modern Computing by Ceruzzi.

Much of the overstatement of Tur-
ing’s role, in newspaper articles or by
participants in online discussion, is
based on simple misunderstandings. For
example, a series of Colossus computers
was used by the British for wartime code-
breaking work. These were the first elec-
tronic digital computers to work prop-
erly. People often assume, incorrectly,
that Turing must have designed Colos-
sus because he worked at the same se-
cret facility doing closely related work.

I could fill many columns doing
nothing more than skewering ridicu-
lous things written about Turing, many
of them by people who ought to know
better. We will learn more by looking at
the best-supported, most careful argu-
ments in favor of the idea that Turing
invented the computer. The philoso-
pher Jack Copeland has been one of the
most passionate and industrious boost-
ers of Turing’s role in recent years, un-

ACM
Journal on

Computing and
Cultural
Heritage

◆ ◆ ◆ ◆ ◆

JOCCH publishes papers of
significant and lasting value in
all areas relating to the use of ICT
in support of Cultural Heritage,
seeking to combine the best of
computing science with real
attention to any aspect of the
cultural heritage sector.

◆ ◆ ◆ ◆ ◆

www.acm.org/jocch
www.acm.org/subscribe

CACM_JOCCH_one-third_page_vertical:Layout 1 7/30/09 5:50 PM Page 1

viewpoints

january 2014 | vol. 57 | no. 1 | communications of the acm 39

U
.S

.
A

r
m

y
 P

h
o

t
o

 f
r

o
m

 t
h

e
 a

r
c

h
i

ve

s
 o

f
 t

h
e

 AR

L
 Te

c

h
n

i
c

a
l

 L
i

b
r

a
r

y

historians. While he provides foot-
notes to support these assertions they
are often to interviews or other sourc-
es written many years after the events
concerned. For example, the claim
that Turing was interested in building
an actual computer in 1936 is sourced
not to any diary entry or letter from the
1930s but to the recollections of one of
Turing’s former lecturers made long
after real computers had been built.
Like a good legal brief, his advocacy is
rooted in detailed evidence but pushes
the reader in one very particular direc-
tion without drawing attention to other
possible interpretations less favorable
to the client’s interests.

Theory vs. Practice
Arguments of this kind raise funda-
mental issues about the connection
of theory and practice. Are abstract,
theoretical insights more fundamen-
tal than pragmatic, engineering-based
advances? Must theoretical break-
throughs precede and guide practical
ones? For a computer scientist, in par-
ticular, it is easy to assume that Tur-
ing’s theoretical work was as centrally
important to the computer designers
of the 1940s as it later becomes within
computer science. There is also some-
thing undeniably attractive in the story
of a lone genius who anticipates the
rest of the world by many years.

Turing’s work was not completely
unknown in the 1940s. There is, for
example, reliable evidence that von
Neumann was aware of the now-fa-
mous paper and shared Turing’s in-
terest in the underlying mathematical
questions it addressed.

Where one might leap into fantasy
is by asserting the cluster of ideas con-
tained in von Neumann’s 1945 “First
Draft” are merely a restatement, or
at most an elaboration, of Turing’s
earlier work on computability. Judge
for yourself, by placing side by side
Turing’s 1936 “On Computable Num-
bers…” and “First Draft of a Report on
the EDVAC.” They are easy to find with
Google, though you might want to pour
yourself a fortifying beverage first as
neither is particularly easy reading.

The former is a paper on mathemat-
ical logic. It describes a thought experi-
ment, like Schrödinger’s famous 1935
description of a trapped cat shifting be-
tween life and death in response to the
behavior of a single atom. Schrödinger
was not trying to advance the state of
the art of feline euthanasia. Neither
was Turing proposing the construction
of a new kind of calculating machine.
As the title of his paper suggested, Tur-
ing designed his ingenious imaginary
machines to address a question about
the fundamental limits of mathemati-
cal proof. They were structured for

leashing a book on Turing’s ACE com-
puter, another on Colossus, a collection
of Turing’s work, a website full of archi-
val Turing documents, and a series of
journal articles. His work continues the
influential legacy of logician Martin Da-
vis, whose history of computing Engines
of Logic presented the universal Turing
machine as the crucial advance behind
the modern computer.

A painstaking and easily accessible
summary of the case for Turing comes
is “Alan Turing: Father of the Modern
Computer” published by Copeland and
Diane Proudfoot in an online journal
edited by Copeland.2 This claims that
the “fundamental conception” embod-
ied in the “First Draft Report” came
from Turing, and that von Neumann
himself “repeatedly emphasized” this.
Copeland also believes that “right from
the start” Turing was interested in
building an actual computer based on
the conceptual mechanism described
in his 1936 paper. This extends a recent
trend, seen for example in George Dy-
son’s book, to write about the teams
working to build computers in the late-
1940s as if they launched their projects
primarily to build practical realizations
of Turing’s abstract machine.

Copeland is deeply knowledgeable
about computing in the 1940s, but as a
philosopher approaches the topic from
with a different perspective from most

Two programmers wiring the right side of the ENIAC with a new program.

viewpoints

40 communications of the acm | january 2014 | vol. 57 | no. 1

P
h

o
t

o
g

r
a

p
h

 C
o

u
r

t
e

s
y

 o
f

 t
h

e
 S

h
el

b

y
 W

h
i

t
e

 a
n

d
 L

e
o

n
 L

ev

y
 A

r
c

h
i

ve

s
 Ce

n

t
e

r
,

I
n

s
t

i
t

u
t

e
 f

o
r

A

d
v

a
n

c
e

d
 S

t
u

d
y

 (
IAS

);
 P

a
pe

r

 I
m

a
g

e
 C

o
u

r
t

e
s

y
 o

f
 t

h
e

 U
n

i
ve

r

s
i

t
y

 o
f

 P
e

n
n

s
y

lv

a
n

i
a

 A
r

c
h

i
ve

s

cheaper, smaller, more reliable, and
more flexible than their predecessors.
ENIAC, the first general-purpose elec-
tronic digital computer, used almost
18,000 vacuum tubes. The more tubes
a machine held the more expensive
it was to build and, as they eventually
burn out, the less reliable. Its immedi-
ate successors held 1,000 or 2,000 tubes
yet could handle problems of greater
logical complexity and were easier to
program. This efficiency made pos-
sible the construction of computers
in cash-strapped Britain following the
war, and made computers affordable
and useful enough that they were rap-
idly turned into commercial products
and applied to business tasks as well as
scientific computations.

According to Copeland, “the fun-
damental conception of the stored-
program universal computer” was Tur-
ing’s. Von Neumann merely “wrote the
first paper explaining how to convert
Turing’s ideas into electronic form.”c
But what actually would have been
different about von Neumann’s “First
Draft” report if Turing had never writ-
ten his now famous paper? My answer
to that question is: nothing (with the
possible exception of the neuron nota-
tion he appropriated to describe logic
gates, whose creators cited Turing).

Copeland has gone so far as to ar-
gue the basic idea of a single machine
that could do different jobs when fed

c	 See http://www.huffingtonpost.com/jack-cope-
land/what-apple-and-microsoft-_b_3742114.html

simplicity, and had little in common
with the approaches taken by people
designing actual machines.

Von Neumann’s report said nothing
explicitly about mathematical logic. It
described the architecture of an actual
planned computer and the technolo-
gies by which it could be realized, and
was written to guide the team that had
already won a contract to develop the
EDVAC. Von Neumann does abstract
away from details of the hardware,
both to focus instead on what we would
now call “architecture” and because
the computer projects under way at
the Moore School were still classified
in 1945. His letters from that period
are full of discussion of engineering
details, such as sketches of particular
vacuum tube models and their perfor-
mance characteristics.

The phrase “stored program con-
cept” has sometimes been used to
encapsulate the content of the “First
Draft” report, but this underplays its
actual impact by implying it held just
one big idea. In fact it provided a wealth
of intertwined ideas and details. In my
current work with Mark Priestley and
Crispin Rope I have found it useful
to separate these into three main ar-
eas.b The first, the “EDVAC Hardware
Paradigm” described an all-electronic
binary computer with a much larger
memory than anything ever built previ-

b	 “Reconsidering the Stored Program Con-
cept,” forthcoming in IEEE Annals of the His-
tory of Computing.

ously. The second, the “von Neumann
Architecture Paradigm,” set out the ba-
sic structure of the modern computer:
special-purpose registers on which all
operations were performed and from
which data was exchanged with main
memory, separation of arithmetic
functions from control functions from
memory units, only one action per-
formed at a time, and so on. The third,
the “Modern Code Paradigm,” con-
cerns the nature and capabilities of its
instructions. For example, instructions
were expressed as through a small vo-
cabulary of operation codes followed
by argument or address fields. These
were held in the same numbered mem-
ory cells as data. While executed by de-
fault in a particular sequence, the ma-
chine could jump out of sequence and
the destination of this jump could be
modified as the program ran based on
the state of the computation.

Taken together, von Neumann’s
cluster of ideas guided the construc-
tion of computers that were much

John von Neumann with the IAS computer
circa 1951 (left); cover page of von Neumann’s
“First Draft of a Report on the EDVAC” (right).

The universal
Turing Machine
has appealed to
theorists from
the 1950s onward.

viewpoints

january 2014 | vol. 57 | no. 1 | communications of the acm 41

different instructions can be traced to
Turing. But Charles Babbage had that
idea long before, and as mentioned
earlier, several computers controlled
by sequential instruction tapes had al-
ready been constructed with no influ-
ence from Turing and were well known
to von Neumann before he wrote his
report. EDVAC went far beyond this to
store a program in addressable inter-
nal memory rather than on a sequen-
tial instruction tape. To suggest this
advance came from Turing is odd, as
the machine Turing described had no
internal writable memory and took
its instructions from a tape. Von Neu-
mann brought a concern with logic
and preference for minimal, general-
purpose mechanisms to the design of
EDVAC but he did not need Turing to
teach him that. He was a mathematic
genius with a deep pragmatic streak
and an astonishing track record of pro-
ductive collaborations across a huge
range of fields.

Turing’s 1936 paper lacks many
novel and fundamental features found
in the “First Draft” such as addressable
memory locations. Neither did Turing
describe instruction codes followed
by arguments, the building blocks of
computer programs. The suggestion
that the EDVAC design was merely a
conversion of Turing’s paper implies
these features are trivial, and the sin-
gle important idea in each document
is that code and data should be treat-
ed interchangeably so programs can
modify themselves. Yet while Turing’s
paper showed one machine could, in
modern terms, emulate the function-
ing of another it never described a
machine altering its own instructions.
Furthermore, at the very end of the
“First Draft” von Neumann expressly
forbade EDVAC from overwriting the
operation fields in its instructions,
even though he relied on modifications
to their address fields to accomplish
basic operations such as conditional
branching. This address modification
was a very influential idea in the “First
Draft,” but was, of course, absent from
Turing’s paper as his machines did not
use addresses. In other words, the ca-
pability for unrestricted self-modifying
code von Neumann is said to have cop-
ied from Turing is something Turing
did not describe and von Neumann’s
design explicitly prohibited.

Computer Science vs. Computing
Our urge to believe the computer proj-
ects of the late 1940s were driven by a
desire to implement universal Turing
machines is part of a broader predis-
position to see theoretical computer
science driving computing as a whole.
If Turing invented computer science,
which is itself something of an oversim-
plification, then surely he must have in-
vented the computer. The computer is,
in this view, just a working through of
the fundamental theoretical ideas rep-
resented by a universal Turing machine
in that it is universal and stores data
and instructions interchangeably.

This line of thinking blurs the fun-
damental distinction between build-
ing something and modeling it. Cope-
land shows that as early as 1949 von
Neumann alluded to Turing’s abstract
model of computation as an interest-
ing proof that automata with a certain
“minimum level of complexity” could
simulate each other’s functioning. Yet
finding an abstraction useful or pro-
vocative as a model of a particular real
system does not imply the design of the
real system was patterned on the ab-
straction. An abstraction, ultimately, is
useful because of what it leaves out.

To focus on historical computers
primarily as embodiments of logical
ideas, ignoring the trade-offs their cre-
ators made when faced with limited re-
sources and unproven technologies, is
to abstract away from the information
needed to understand their history and
development. Progress in electronic en-
gineering, particularly in memory tech-
nologies, created the circumstances in
which it began to make sense to think
about high-speed digital computers in
which instructions were stored elec-
tronically. In turn, ideas about the best
way to design these machines drove fur-
ther progress in component technolo-
gies and engineering methods.

The universal Turing Machine has
appealed to theorists from the 1950s on-
ward precisely because it abstracts away
from the complexity of real computer
architectures and decouples questions
of computability from those of design
and engineering. This has been enor-
mously useful for computing theorists,
both technically and sociologically. Yet,
paradoxically, the world seems increas-
ingly eager to locate the origin of the
computer in a mathematical abstrac-

tion adopted precisely because it hid all
the messy issues of architecture and en-
gineering needed to make any real com-
puter function. Hardware and software
are interchangeable to the theorist, but
not to the historian.	

Further Reading

Aspray, W.
John von Neumann and the Origins of
Modern Computing. MIT Press, 1990.
A thorough and careful survey of von
Neumann’s many contributions to early
computing, including his work on the “First
Draft of a Report on the EDVAC.”
Copeland, J.
Turing: Pioneer of the Information Age.
Oxford, 2013. A concise summary of
Copeland’s work on Turing’s ideas and their
legacy. He has produced related volumes
on Turing’s planned ACE computer and the
wartime Colossus work.
Hodges, A.
Alan Turing: The Enigma (Centenary Edition).
Princeton University Press, 2012.
An updated edition of the monumental
biography that originally put Turing on
the road to broader fame.
Lavington S., Ed.
Alan Turing and His Contemporaries:
Building the World’s First Computers. British
Informatics Society, 2012. A concise and
clearly written expert history, honoring
Turing’s accomplishments and placing
them in the context of British computer
developments during the 1940s.
Levy, P.
“The Invention of the Computer.” In Serres, M.
(Ed.) A History of Scientific Thought. Blackwell,
1995. Concise and thoughtful in its summary
of key early computers and their relationship
to technologies, applications, and Turing.
Mahoney, M.S., Ed. Haigh, T.
Histories of Computing. Harvard University
Press, 2011. Section three of this book, “The
Structures of Computation,” is a provocative
selection of papers on the origins of
theoretical computer science and its
relationship to computation and simulation.

References
1.	A kera, A, Calculating a Natural World, MIT, 2006.
2.	C opeland, B.J. and Proudfoot, D. Alan Turing:

Father of the modern computer. Rutherford Journal
4, 2011–2012; http://www.rutherfordjournal.org/
article040101.html.

3.	D aylight, E.G. Towards a historical notion of ‘Turing—
The father of computer science.’ To appear in History
and Philosophy of Logic; www.dijkstrascry.com/
TuringPaper.

4.	M ounier-Kuhn, P. Logic and computing in France:
A late convergence. International Symposium on
History and Philosophy of Programming; http://www.
computing-conference.ugent.be/file/12.

5.	 Priestley, M. A Science of Operations. Springer, 2010.

Thomas Haigh (thaigh@computer.org) is an associate
professor of information studies at the University of
Wisconsin, Milwaukee, and chair of the SIGCIS group for
historians of computing.

Copyright held by Author/Owner(s).

