
Advanced Cryptography
University of Michigan, Winter 2016 Homework 5

Instructor: Chris Peikert
Student: SOLUTIONS

This homework is due by 7pm on March 18 via the course Canvas page. Start early!

Instructions. Solutions must be typed, preferably in LATEX (a template for this homework is available on the
course web page). Your work will be graded on correctness, clarity, and concision. You should only submit
work that you believe to be correct; if you cannot solve a problem completely, you will get significantly more
partial credit if you clearly identify the gap(s) in your solution. It is good practice to start any long solution
with an informal (but accurate) “proof summary” that describes the main idea.

You may collaborate with others on this problem set and consult external sources. However, you must write
your own solutions and list your collaborators/sources for each problem.

1. For each of the following modifications to the Merkle-Damgård transform (Construction 5.3 in the
textbook), determine whether the result is collision resistant. If yes, provide a proof; if not, demonstrate
an attack.

(a) Instead of using an IV , just start the computation from x1. That is, define z1 := x1 and then
compute zi := hs(zi−1||xi) for i = 2, . . . , B + 1, and output zB+1.

Solution: This is collision resistant. The proof proceeds almost identically to the proof of
Theorem 5.4 in the textbook.

(b) Instead of using a fixed IV , set z0 := B and then compute zi := hs(zi−1||xi) for i = 1, . . . , B,
and output zB .

Solution: This is not necessarily collision resistant. Fix an arbitrary string x1 ∈ {0, 1}n. We
build a collision-resistant hash function hs : {0, 1}2n → {0, 1}n where hs(〈2〉‖x1) = 〈1〉. Let
g : {0, 1}2n → {0, 1}n−1 be a collision-resistant hash function. It is easy to verify that hs
defined as

hs(x) =

{
〈1〉 if x = 〈2〉‖x1
1‖gs(x) otherwise

is collision resistant: there is exactly one input x = 〈2〉‖x1 that maps to an output starting
with 0, so any collision in hs must hash to an output starting with 1, which yields a collision
in gs. Now notice that for every x2 ∈ {0, 1}n we have Hs(x1‖x2) = hs(hs(〈2〉‖x1)‖x2) =
hs(〈1〉‖x2) = Hs(x2) which means that x1‖x2, x2 is a collision.

2. Let (Gen, h) be a second preimage-resistant compression function. Apply the Merkle-Damgård transform
(Construction 5.3) to (Gen, h) to obtain (Gen, H). Is (Gen, H) necessarily a second preimage-resistant
hash function? If so, prove it; if not, give a counterexample and attack.

Solution: It is not necessarily a 2PR hash function. Let gs : {0, 1}2n → {0, 1}n−1 be a 2PR hash
function. We build a 2PR hash function hs such that hs(x‖〈L〉) = 〈0〉 for every x ∈ {0, 1}n, defined
as

hs(x1‖x2) =

{
0n if x2 = 〈L〉,
1‖gs(x1‖x2) otherwise.
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Clearly, H (when instantiated with h) produces the same output 0n on all strings of length L, so it is
trivially not 2PR.

It remains to argue that hs is 2PR: for a uniformly random input x = x1‖x2, if x2 6= 〈0〉 then a
collision with x under hs is also a collision with x under gs. However, if x2 = 〈0〉, which occurs with
probability only 2−n, then it is easy to find a collision with x under hs (which does not necessarily
yield a collision in gs). We conclude that any efficient adversary’s advantage against hs is at most
2−n larger than against gs, so it is still negligible.

3. Fix an n-bit modulus N and an element e ∈ Z∗ϕ(N). Suppose there is an efficient algorithm A such that

Pr
x←Z∗N

[A(xe) = x] ≥ 1/ poly(n).

Construct an efficient algorithm B that uses A as an oracle, so that for every x ∈ Z∗N ,

Pr[BA(xe) = x] ≥ 1− negl(n).

(Hint: Use the fact that y1/e · r = (y · re)1/e for any y, r ∈ Z∗N .)

Solution: By assumption, A’s success probability above is at least 1/nc for some constant c.

We define B as follows: on input y = xe mod N , do independent runs of the following loop up
to nc+1 = poly(n) times: choose a uniformly random r ← Z∗N , run A on input y · re = (xr)e to
get some z ∈ Z∗N , and let x′ = z · r−1 ∈ Z∗N . (If A aborts or outputs nonsense, just set x′ = 1.)
If (x′)e = y then output x′ as the solution, otherwise loop. (If all loops fail, output some arbitrary
value.)

Observe that for each run of the loop, x · r ∈ Z∗N is uniformly random, because a uniformly random
group element r times any fixed group element x is uniformly random in the group. Therefore, the
probability that a given loop succeeds is at least 1/nc. Finally, because the loops are independent, B
fails only if all the loops fail. Letting M = nc, this happens with probability at most

(1− 1/M)Mn = ((1− 1/M)M )n < e−n = negl(n).

4. Let GenRSA be as in Section 8.2.4. Define the hash function family (Gen, H) as follows:

• Gen(1n): run GenRSA(1n) to obtain N, e, d, and select y ← Z∗N . Output s = 〈N, e, y〉 as the key.

• Hs where s = 〈N, e, y〉: Define fs,0(x) := xe and fs,1(x) := y · xe. For input x = x1 · · ·x3n,
define

Hs(x) := fs,x1(fs,x2(· · · fs,x3n(1) · · · )).

Prove that if the RSA problem is hard relative to GenRSA, then (Gen, H) is a collision-resistant hash
function family.
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Solution: Let A be an efficient attacker against H . Using A we build an attacker B against RSA
relative to GenRSA. On input 〈N, e, y〉, B runs A with s = 〈N, e, y〉 to potentially get two different
strings x, x′ ∈ {0, 1}3n such that Hs(x) = Hs(x

′). Let i be the smallest index such that xi 6= x′i;
without loss of generality xi = 0 and x′i = 1. Let z = fs,xi+1(· · · fs,x3n(1) · · · ) and similarly for z′,
and output z/z′ ∈ Z∗N as the desired solution.

We claim that B outputs the eth root of y whenever A outputs a collision, so they have their
advantages are equal. Because each fs,b is a permutation, and xj = x′j for all j < i, we must have
ze = fs,xi(z) = fs,x′i(z

′) = y · (z′)e. It follows that (z/z′)e = y, as desired.

5. Prove that Rabin’s family {fN : QR∗N → QR∗N}, where the domain of N is the set of Blum integers and
fN (x) := x2 mod N , is a collection of trapdoor permutations. Describe the form of the trapdoor and an
efficient algorithm to compute f−1N (y) given the trapdoor and any y ∈ QR∗N .

Solution: The trapdoor is the prime factorization of N , i.e., prime numbers p and q such that
N = pq. We invert fN using the trapdoor by finding the square root that is itself a square modulo
both p and q, and combining them via the Chinese Remainder Theorem.

More formally, given any y ∈ Z∗N , we efficiently compute the square roots±xp ∈ Z∗p and±xq ∈ Z∗q
such that x2p = y mod p and x2q = y mod q. Exactly one of each pair is itself a square which we

can determine by testing whether x(p−1)/2p = 1 mod p (and similarly for xq), as shown in class.
Finally, we recover f−1N (y) ∈ QR∗N from the appropriate square roots using the Chinese Remainder
Theorem to map back from QR∗p ×QR∗q to QR∗N .
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