
2Exponential Growth and Decay

The exponential function is one of the most important and
widely occurring functions in physics and biology. In biology
it may describe the growth of bacteria or animal populations,
the decrease of the number of bacteria in response to a ster-
ilization process, the growth of a tumor, or the absorption or
excretion of a drug. (Exponential growth cannot continue for-
ever because of limitations of nutrients, etc.) Knowledge of
the exponential function makes it easier to understand birth
and death rates, even when they are not constant. In physics,
the exponential function describes the decay of radioactive
nuclei, the emission of light by atoms, the absorption of light
as it passes through matter, the change of voltage or current
in some electrical circuits, the variation of temperature with
time as a warm object cools, and the rate of some chemical
reactions.

In this book, the exponential function will be needed to
describe certain probability distributions, the concentration
ratio of ions across a cell membrane, the flow of solute
particles through membranes, the decay of a signal travel-
ing along a nerve axon, and the return of some physiologic
variables to their equilibrium values after they have been
disturbed.

Because the exponential function is so important, and be-
cause we have seen many students who did not understand
it even after having been exposed to it, the chapter starts
with a gentle introduction to exponential growth (Sect. 2.1)
and decay (Sect. 2.2). Section 2.3 shows how to analyze ex-
ponential data using semilogarithmic graph paper. The next
section shows how to use semilogarithmic graph paper to
find instantaneous growth or decay rates when the rate varies.
Some would argue that the availability of computer programs
that automatically produce logarithmic scales for plots makes
these sections unnecessary. We feel that intelligent use of
semilogarithmic and logarithmic (log–log) plots requires an
understanding of the basic principles.

Variable rates are described in Sect. 2.4. Clearance, dis-
cussed in Sect. 2.5, is an exponential decay process that is
important in physiology. Microbiologists often grow cells
in a chemostat, described in Sect. 2.6. Sometimes there are

competing paths for exponential removal of a substance:
multiple decay paths are introduced in Sect. 2.7. A very ba-
sic and simple model for many processes is the combination
of input at a fixed rate accompanied by exponential decay,
described in Sect. 2.8. Sometimes a substance exists in two
forms, each with its own decay rate. One then must fit two or
more exponentials to the set of data, as shown in Sect. 2.9.

Section 2.10 discusses the logistic equation, one possible
model for a situation in which the growth rate decreases as
the amount of substance increases. The chapter closes with
a section on power–law relationships. While not exponen-
tial, they are included because data analysis can be done with
log–log graph paper, a technique similar to that for semilog
paper. If you feel mathematically secure, you may wish to
skim the first four sections, but you will probably find the
rest of the chapter worth reading.

2.1 Exponential Growth

An exponential growth process is one in which the rate of
increase of a quantity is proportional to the present value
of that quantity. The simplest example is a savings account.
If the interest rate is 5 % and if the interest is credited to
the account once a year, the account increases in value by
5 % of its present value each year. If the account starts out
with $ 100, then at the end of the first year, $ 5 is credited
to the account and the value becomes $ 105. At the end of
the second year, 5 % of $ 105 is credited to the account and
the value grows by $ 5.25 to 110.25. The growth of such an
account is shown in Table 2.1 and Fig. 2.1. These amounts
can be calculated as follows: At the end of the first year, the
original amount, y0, has been augmented by (0.05)y0:

y1 = y0(1 + 0.05).

During the second year, the amount y1 increases by 5 %, so

y2 = y1(1.05) = y0(1.05)(1.05) = y0(1.05)2.
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Table 2.1 Growth of a savings account earning 5 % interest com-
pounded annually, when the initial investment is $ 100

Year Amount ($) Year Amount ($) Year Amount ($)

1 105.00 10 162.88 100 1.31 × 104

2 110.25 20 265.33 200 1.73 × 106

3 115.76 30 432.19 300 2.27 × 108

4 121.55 40 704.00 400 2.99 × 1010

5 127.63 50 1146.74 500 3.93 × 1012

6 134.01 60 1867.92 600 5.17 × 1014

7 140.71 70 3042.64 700 6.80 × 1016

8 147.75 80 4956.14 800 8.94 × 1018

9 155.13 90 8073.04 900 1.18 × 1021
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Fig. 2.1 The amount in a savings account after t years, when the
amount is compounded annually at 5 % interest

After t years, the amount in the account is

yt = y0(1.05)t .

In general, if the growth rate is b per compounding period,
the amount after t periods is

yt = y0(1 + b)t . (2.1)

It is possible to keep the same annual growth (interest)
rate, but to compound more often than once a year. Ta-
ble 2.2 shows the effect of different compounding intervals
on the amount, when the interest rate is 5 %. The last two
columns, for monthly compounding and for “instant inter-
est,” are listed to the nearest tenth of a cent to show the slight
difference between them.

The table entries were calculated in the following way:
Suppose that compounding is done N times a year. In t years,
the number of compoundings is Nt . If the annual fractional

Table 2.2 Amount of an initial investment of $ 100 at 5 % annual
interest, with different methods of compounding

Month Annual Semiannual Quarterly Monthly Instant
($) ($) ($) ($) ($)

0 100.00 100.00 100.00 100.000 100.000
1 100.00 100.00 100.00 100.417 100.418
2 100.00 100.00 100.00 100.835 100.837
3 100.00 100.00 101.25 101.255 101.258
4 100.00 100.00 101.25 101.677 101.681
5 100.00 100.00 101.25 102.101 102.105
6 100.00 102.50 102.52 102.526 102.532
7 100.00 102.50 102.52 102.953 102.960
8 100.00 102.50 102.52 103.382 103.390
9 100.00 102.50 103.80 103.813 103.821
10 100.00 102.50 103.80 104.246 104.255
11 100.00 102.50 103.80 104.680 104.690
12 105.00 105.06 105.09 105.116 105.127

Table 2.3 Numerical examples of the convergence of (1 + b/N)N to
eb as N becomes large

N b = 1 b = 0.05
10 2.594 1.0511

100 2.705 1.0513
1000 2.717 1.0513

eb 2.718 1.0513

rate of increase is b, the increase per compounding is b/N .
For 6 months at 5 % (b = 0.05), the increase is 2.5, for 3
months it is 1.25, etc. The amount after t units of time (years)
is, in analogy with Eq. 2.1,

y = y0 (1 + b/N)Nt . (2.2)

Recall (refer to Appendix C) that (a)bc = (ab)c. The
expression for y can be written as

y = y0

[
(1 + b/N)N

]t
. (2.3)

Most calculus textbooks show that the quantity

(1 + b/N)N → eb

as N becomes very large. (Rather than proving this fact here,
we give numerical examples in Table 2.3 for two different
values of b.) Therefore, Eq. 2.3 can be rewritten as

y = y0e
bt = y0 exp(bt). (2.4)

(The exp notation is used when the argument is compli-
cated.) To calculate the amount for instant interest, it is
necessary only to multiply the fractional growth rate per
unit time b by the length of the time interval and then look
up the exponential function of this amount in a table or
evaluate it with a computer or calculator. The number e is
approximately equal to 2.71828 . . . and is called the base of
the natural logarithms. Like π (3.14159 . . . ), e has a long
history (Maor 1994).
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Fig. 2.2 A graph of the exponential function y = et

The exponential function is plotted in Fig. 2.2. (The mean-
ing of negative values of t will be considered in the next
section.) This function increases more and more rapidly as t

increases. This is expected, since the rate of growth is always
proportional to the present amount. This is also reflected in
the following property of the exponential function:

d

dt

(
ebt
)

= bebt . (2.5)

This means that the function y = y0e
bt has the property that

dy

dt
= by. (2.6)

Any constant multiple of the exponential function ebt has the
property that its rate of growth is b times the function itself.
Whenever we see the exponential function, we know that it
satisfies Eq. 2.6. Equation 2.6 is an example of a differen-
tial equation. If you learn how to solve only one differential
equation, let it be Eq. 2.6. Whenever we have a problem in
which the growth rate of something is proportional to the
present amount, we can expect to have an exponential solu-
tion. Notice that for time intervals t that are not too large,
Eq. 2.6 implies that �y = (b�t)y. This again says that the
increase in y is proportional to y itself.

The independent variable in this discussion has been t . It
can represent time, in which case b is the fractional growth
rate per unit time; distance, in which case b is the fractional
growth per unit distance; or something else. We could, of
course, use another symbol such as x for the independent
variable, in which case we would have dy/dx = by, y =
y0e

bx .
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Fig. 2.3 A plot of the fraction of nuclei of 99mTc surviving at time t

2.2 Exponential Decay

Figure 2.2 shows the exponential function for negative values
of t as well as positive ones. (Remember that e−t = 1/et .)
To see what this means, consider a bank account in which no
interest is credited, but from which 5 % of what remains is
taken each year. If the initial balance is $ 100, $ 5 is removed
the first year to leave $ 95.00. In the second year, 5 % of
$ 95 or $ 4.75 is removed. In the third year, 5 % of $ 90.25
or $ 4.51 is removed. The annual decrease in y becomes less
and less as y becomes less and less. The equations developed
in the preceding section also describe this situation. It is only
necessary to call b the fractional decay and allow it to have
a negative value, − |b|. Equation 2.1 then has the form y =
y0(1 − |b|)t and Eq. 2.4 is

y = y0e
−|b|t . (2.7)

Often b is regarded as being intrinsically positive, and Eq. 2.7
is written as

y = y0e
−bt . (2.8)

One could equally well write y = y0e
bt and regard b as be-

ing negative, but this can cause confusion, for example with
Eq. 2.10 below.

The radioactive isotope 99mTc (read as technetium-99)
has a fractional decay rate b = 0.1155 h−1. If the number
of atoms at t = 0 is y0, the fraction f = y/y0 remaining at
later times decreases as shown in Fig. 2.3. The equation that
describes this curve is

f = y

y0
= e−bt , (2.9)

where t is the elapsed time in hours and b = 0.1155 h−1. The
product bt must be dimensionless, since it is in the exponent.

People often talk about the half-life T1/2, which is the
length of time required for f to decrease to one-half. From
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inspection of Fig. 2.3, the half-life is 6 h. This can also be
determined from Eq. 2.9:

0.5 = e−bT1/2 .

From a table of exponentials, one finds that e−x = 0.5 when
x = 0.69315. This leads to the very useful relationship
bT1/2 = 0.693 or

T1/2 = 0.693

b
. (2.10)

For the case of 99mTc, the half-life is T1/2 = 0.693/0.1155 =
6 h.

One can also speak of a doubling time if the exponent is
positive. In that case, 2 = ebT2 , from which

T2 = 0.693

b
. (2.11)

2.3 Semilog Paper

A special kind of graph paper, called semilog paper, makes
the analysis of exponential growth and decay problems much
simpler. If one takes logarithms (to any base) of Eq. 2.4, one
has

log y = log y0 + bt log e. (2.12)

If the dependent variable is considered to be u = log y, and
since log y0 and log e are constants, this equation is of the
form

u = c1 + c2t . (2.13)

The graph of u vs t is a straight line with positive slope if b

is positive and negative slope if b is negative.
On semilog paper the vertical axis is marked in a loga-

rithmic fashion. The graph can be plotted without having to
calculate any logarithms. Figure 2.4 shows a plot of the ex-
ponential function of Fig. 2.2, for both positive and negative
values of t . First, note how to read the vertical axis. A given
distance along the axis always corresponds to the same mul-
tiplicative factor. Each cycle represents a factor of ten. To use
the paper, it is necessary first to mark off the decades with the
desired values. In Fig. 2.4, the decades have been marked 0.1,
1, 10, and 100. The 6 that lies between 0.1 and 1 is 0.6; the 6
between 1 and 10 is 6.0; the 6 between 10 and 100 represents
60; and so forth. The paper can be imagined to go vertically
forever in either direction; one never reaches zero. Figure 2.4
has two examples marked on it with dashed lines. The first
shows that for t = −1.0, y = 0.36; the second shows that
for t = +1.5, y = 4.5.

Semilog paper is most useful for plotting data that you
suspect may have an exponential relationship. If the data plot
as a straight line, your suspicions are confirmed. From the

Fig. 2.4 A plot of the exponential function on semilog paper

straight line, you can determine the value of b. Figure 2.5
is a plot of the intensity of light that passed through an ab-
sorber in a hypothetical example. The independent variable
is absorber thickness x. The decay is exponential, except for
the last few points, which may be high because of experimen-
tal error. (As the intensity of the light decreases, it becomes
harder to measure accurately.) We wish to determine the de-
cay constant in y = y0e

−bx . One way to do it would be
to note (dashed line A in Fig. 2.5) that the half-distance is
0.145 cm, so that, from Eq. 2.10,

b = 0.693

0.145
= 4.8 cm−1.

This technique can be inaccurate because it is difficult to read
the graph accurately. It is more accurate to use a portion of
the curve for which y changes by a factor of 10 or 100. The
general relationship is y = y0e

bx , where the value of b can be
positive or negative. If two different values of x are selected,
one can write

y2

y1
= y0e

bx2

y0ebx1
= eb(x2−x1).

If y2/y1 = 10, then this equation has the form 10 = ebX10

where X10 = x2 − x1 when y2/y1 = 10. From a table of
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Fig. 2.5 A semilogarithmic plot of the intensity of light after it has
passed through an absorber of thickness x

exponentials, bX10 = 2.303, so that

b = 2.303

X10
. (2.14)

The same procedure can be used to find b using a factor of
100 change in y:

b = 4.605

X100
. (2.15)

If the curve represents a decaying exponential, then y2/y1 =
10 when x2 < x1, so that X10 = x2 − x1 is negative. Equa-
tion 2.14 then gives a negative value for b. It is customary to
state separately that we are dealing with decay and regard b

as positive.
As an example, consider the exponential decay in Fig. 2.5.

Using points B and C, we have x1 = 0.97, y1 = 10−2, x2 =
0.48, y2 = 10−1, X10 = 0.480 − 0.97 = −0.49. Therefore,
b = 2.303/(0.49) = 4.7 cm−1, which is a more accurate
determination than the one we made using the half-life.

When we are dealing with real data, we must consider
the fact that each measurement has an experimental error as-
sociated with it. If we make several measurements of y for
a particular value of the independent variable x, the values
of y will be scattered. We indicate this by the error bars in

Fig. 2.6 Plot of y = e−0.5t with error bars ±0.05 on linear (a) and
semilog paper (b)

Fig. 2.6. (Determining the size of these error bars is discussed
in Chap. 11.) The data points in Fig. 2.6 are given exactly by
y = e−0.5x , where y is the fraction remaining at time x.
There is no data point for x = 0, but we must make sure that
our fitting line passes through the point (0,1). The error bars
show an error of ±0.09. The error bars on the semilog plot
are not all the same length, being much larger for long times
(small values of y). If we do not plot the error bars before
drawing our line, we will give too much emphasis to the data
points for small y.

Equal error bars for all the points on a semilog plot corre-
spond to the same percentage error for each point, as shown
in Fig. 2.7.
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Fig. 2.7 Plot of y = e−0.5t with 5 % error bars in linear (a) and semilog
paper (b)

2.4 Variable Rates

The equation dy/dx = by (or dy/dt = by) says that y

grows or decays at a rate that is proportional to y. The con-
stant b is the fractional rate of growth or decay. It is possible
to define the fractional rate of growth or decay even if it is
not constant but is a function of x:

b(x) = 1

y

dy

dx
. (2.16)

Semilogarithmic graph paper can be used to analyze the
curve even if b is not constant. Since d(ln y)/dy = 1/y, the

Fig. 2.8 A semilogarithmic plot of y vs x when the decay rate is not
constant. Each tangent line represents the instantaneous decay rate for
that value of x

chain rule for evaluating derivatives gives

d

dx
(ln y) = 1

y

dy

dx
= b.

This means that b(x) is the slope of a plot of ln y vs x. A
semilogarithmic plot of y vs x is shown in Fig. 2.8. The
straight lines are tangent to the curve and decay with a con-
stant rate equal to b(x) at the point of tangency. The ordinate
in Fig. 2.8 can be the log of y to any base; the value of b

for the tangent line is determined using the methods in the
previous section.

If finite changes �x and �y have been measured, they
may be used to estimate b(x) directly from Eq. 2.16. For
example, suppose that y=100,000 people and that in �x =
1 year there is a change �y = −37. In this case, �y

is very small compared to y, so we can say that b =
(1/y)(�y/�x) = −37 × 10−5 y−1. If the only cause of
change in this population is deaths, the absolute value of b

is called the death rate.
A plot of the number of people surviving in a population,

all of whom have the same disease, can provide informa-
tion about the prognosis for that disease. The death rate is
equivalent to the decay constant. An example of such a plot
is shown in Fig. 2.9. Curve A shows a disease for which
the death rate is constant. Curve B shows a disease with an
initially high death rate that decreases with time; if the pa-
tient survives the initial period, the prognosis is much better.
Curve C shows a disease for which the death rate increases
with time.

Surprisingly, there are a few diseases that have death rates
independent of the duration of the disease (Zumoff et al.
1966). Any discussion of mortality should be made in terms
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Fig. 2.9 Semilogarithmic plots of the fraction of a population surviv-
ing in three different diseases. The death rates (decay constants) depend
on the duration of the disease
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Fig. 2.10 Survival of patients with congestive heart failure. (Data are
from McKee et al. 1971)

of the surviving population, since any further deaths must
come from that group. Nonetheless, one often finds results
in the literature reported in terms of the cumulative fraction
of patients who have died. Figure 2.10 shows the survival of
patients with congestive heart failure for a period of 9 years.
The data are taken from the Framingham study (McKee et al.
1971; Levy and Brink 2005); the death rate is constant dur-
ing this period. For a more detailed discussion of various
possible survival distributions, see Clark (1975).

As long as b has a constant value, it makes no differ-
ence what time is selected to be t = 0. To see this, suppose
that the value of y decays exponentially with constant rate:
y = y0e

−bt . Consider two different time scales, shifted with
respect to each other so that t ′ = t0+t . In terms of the shifted
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Fig. 2.11 The fraction of patients surviving after a myocardial infarc-
tion (heart attack) at t = 0. The mortality rate decreases with time.
(From data in Bland and White 1941)

time t ′, the value of y is

y = y0e
−bt = y0e

−b(t ′−t0) =
(
y0e

bt0
)

e−bt ′ .

This has the same form as the original expression for y(t).
The value of y′

0 is y0e
bt0 , which reflects the fact that t ′ = 0

occurs at an earlier time than t = 0, so y′
0 > y0.

If the decay rate is not constant, then the origin of time
becomes quite important. Usually there is something about
the problem that allows t = 0 to be determined. Figure 2.11
shows survival after a heart attack (myocardial infarct). The
time of the initial infarct defines t = 0; if the origin had been
started 2 or 3 years after the infarct, the large initial death
rate would not have been seen.

As long as the rate of increase can be written as a func-
tion of the independent variable, Eq. 2.16 can be rewritten as
dy/y = b(x)dx. This can be integrated:

∫ y2

y1

dy

y
=
∫ x2

x1

b(x) dx,

ln(y2/y1) =
∫ x2

x1

b(x) dx,

y2

y1
= exp

(∫ x2

x1

b(x) dx

)
. (2.17)

If we can integrate the right-hand side analytically, numeri-
cally, or graphically, we can determine the ratio y2/y1.
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Fig. 2.12 A case in which the rate of removal of a substance from
the a fluid compartment depends on the concentration, not on the total
amount of substance in the compartment. Increasing the compartment
volume with the same concentration of the substance would not change
the rate of removal

2.5 Clearance

In some cases in physiology, the amount of a substance may
decay exponentially because the rate of removal is propor-
tional to the concentration of the substance (amount per unit
volume) instead of to the total amount. For example, the rate
at which the kidneys excrete a substance may be propor-
tional to the concentration in the blood that passes through
the kidneys, while the total amount depends on the total fluid
volume in which the substance is distributed. This is shown
schematically in Fig. 2.12. The large box on the left repre-
sents the total fluid volume V . It contains a total amount of
some substance, y. If the fluid is well mixed, the concen-
tration is C = y/V . The removal process takes place only
at the dashed line, at a rate proportional to C. The equation
describing the change of y is

dy

dt
= −KC = −K

( y

V

)
. (2.18)

The proportionality constant K is called the clearance. Its
units are m3 s−1. The equation is the same as Eq. 2.6 if K/V

is substituted for b. The solution is

y = y0e
−(K/V )t . (2.19)

The basic concept of clearance is best remembered in
terms of Fig. 2.12. Other definitions are found in the litera-
ture. It sometimes takes considerable thought to show that the
definitions are equivalent. A common definition in physiol-
ogy books is “clearance is the volume of plasma from which
y is completely removed per unit time.” To see that this defi-
nition is equivalent, imagine that y is removed from the body
by removing a volume V of the plasma in which the concen-
tration of y is C. The rate of loss of y is the concentration
times the rate of volume removal:

dy

dt
= −

∣∣∣∣
dV

dt

∣∣∣∣C. (2.20)

(dV/dt is negative for removal.) Comparison with Eq. 2.18
shows that |dV/dt | = K .

As long as the compartment containing the substance
is well mixed, the concentration will decrease uniformly
throughout the compartment as y is removed. The concen-
tration also decreases exponentially:

C = C0e
−(K/V )t . (2.21)

An example may help to clarify the distinction between
b and K . Suppose that the substance is distributed in a fluid
volume V = 18 l. The substance has an initial concentration
C0 = 3 mg l−1and the clearance is K = 2 l h−1. The total
amount is y0 = C0V = 3 × 18 = 54 mg. The fractional
decay rate is b = K/V = 1/9 h−1. The equations for C and
y are C = (3 mg l−1)e−t/9, y = (54 mg)e−t/9. At t = 0, the
initial rate of removal is −dy/dt = 54/9 = 6 mg h−1.

Now double the fluid volume to V = 36 l without
adding any more of the substance. The concentration falls
to 1.5 mg l−1 although y0 is unchanged. The rate of removal
is also cut in half, since it is proportional to K/V and the
clearance is unchanged. The concentration and amount are
now C = 1.5e−t/18, y = 54e−t/18. The initial rate of re-
moval is dy/dt = 54/18 = 3 mg h−1. It is half as large as
above, because C is now half as large.

If more of the substance were added along with the
additional fluid, the initial concentration would be un-
changed, but y0 would be doubled. The fractional decay
rate would still be K/V = 1/18 h−1: C = 3.0e−t/18,
y = 108e−t/18. The initial rate of disappearance would be
dy/dt = 108/18 = 6 mg h−1. It is the same as in the first
case, because the initial concentration is the same.

2.6 The Chemostat

The chemostat is used by bacteriologists to study the growth
of bacteria (Hagen 2010). It allows the rapid growth of bac-
teria to be observed over a longer time scale. Consider a
container of bacterial nutrient of volume V . It is well stirred
and contains y bacteria with concentration C = y/V . Some
of the nutrient solution is removed at rate Q and replaced by
fresh nutrient. The bacteria in the solution are reproducing at
rate b. The rate of change of y is

dy

dt
= by − QC = by − Qy

V
. (2.22)

Therefore the growth rate is slowed to

b − Q

V

and can be adjusted by varying Q.
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2.7 Multiple Decay Paths

It is possible to have several independent paths by which y

can disappear. For example, there may be several competing
ways by which a radioactive nucleus can decay, a radioactive
isotope given to a patient may decay radioactively and be ex-
creted biologically at the same time, a substance in the body
can be excreted in the urine and metabolized by the liver, or
patients may die of several different diseases.

In such situations the total decay rate b is the sum of the
individual rates for each process, as long as the processes
act independently and the rate of each is proportional to the
present amount (or concentration) of y:

dy

dt
= −b1y−b2y−b3y−· · · = −(b1+b2+b3+· · · )y = −by.

(2.23)
The equation for the disappearance of y is the same as before,
with the total decay rate being the sum of the individual rates.
The rate of disappearance of y by the ith process is not dy/dt

but is −biy. Instead of decay rates, one can use half-lives.
Since b = b1 + b2 + b3 + · · · , the total half-life T is given
by

0.693

T
= 0.693

T1
+ 0.693

T2
+ 0.693

T3
+ · · ·

or
1

T
= 1

T1
+ 1

T2
+ 1

T3
+ · · · . (2.24)

2.8 Decay Plus Input at a Constant Rate

Suppose that in addition to the removal of y from the system
at a rate −by, y enters the system at a constant rate a, inde-
pendent of y and t . The net rate of change of y is given by

dy

dt
= a − by. (2.25)

It is often easier to write down a differential equation
describing a problem than it is to solve it. In this case the
solution to the equation and the techniques for solving it
are well known. However, a good deal can be learned about
the solution by examining the equation itself. Suppose that
y(0) = 0. Then the equation at t = 0 is dy/dt = a, and y

initially grows at a constant rate a. As y builds up, the rate of
growth decreases from this value because of the −by term.
Finally when a−by = 0, dy/dt is zero and y stops growing.
This is enough information to make the sketch in Fig. 2.13.

The equation is solved in Appendix F. The solution is

y = a

b

(
1 − e−bt

)
. (2.26)

The derivative of y is dy/dt = ( a
b

)
(−1)(−b)e−bt = ae−bt .

Fig. 2.13 Sketch of the initial slope a and final value a/b of y when
y(0) = 0

Fig. 2.14 a Plot of y(t). b Plot of dy/dt

You can verify by substitution that Eq. 2.26 satisfies
Eq. 2.25. The solution does have the properties sketched in
Fig. 2.13, as you can see from Fig. 2.14. The initial value of
dy/dt is a, and it decreases exponentially to zero. When t is
large, the exponential term in y vanishes, leaving y = a/b.

2.9 DecayWithMultiple Half-Lives and Fitting
Exponentials

Sometimes y is a mixture of two or more quantities, each
decaying at a constant rate. It might represent a mixture of
radioactive isotopes, each decaying at its own rate. A bio-
logical example is the survival of patients after a myocardial
infarct (Fig. 2.11). The death rate is not constant, and many
models can be proposed to explain why. One possible model
is that there are two distinct classes of patients immediately
after the infarct. Each class has an associated death rate that
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Fig. 2.15 Fitting a curve with two exponentials

is constant. After 3 years, virtually none of the subgroup
with the higher death rate remains. Another model is that
the death rate is higher right after the infarct for all patients.
This higher death rate is due to causes associated with the
myocardial injury: irritability of the muscle, arrhythmias in
the heartbeat, the weakening of the heart wall at the site of
the infarct, and so forth. After many months, the heart has
healed, scar tissue has replaced the necrotic (dead) muscle,
and deaths from these causes no longer occur.

Whatever the cause, it is sometimes useful to fit a set
of experimental data with a sum of exponentials. It should
be clear from the discussion of survival after myocardial
infarction that simply fitting with an exponential or a sum
of exponentials does not prove anything about the decay
mechanism.

If y consists of two quantities, y1 and y2, each with its
own decay rate, then

y = y1 + y2 = A1e
−b1t + A2e

−b2t . (2.27)

Suppose that b1 > b2, so that y1 decays more rapidly than
y2. After enough time has elapsed, y1 will be much less than
y2, and its effect on a semilog plot will be negligible. A typ-
ical plot of y is curve A in Fig. 2.15. Line B can then be
drawn through the data and used to determine A2 and b2.
This line is extrapolated back to earlier times, so that y2 can

be subtracted from y to give an estimate for y1. For example,
at point C (t = 4), y = 400, y2 = 300, and y1 = 100. At
t = 0, y1 = 1500 − 500 = 1000. For times greater than
5 s, the curves for y and y2 are close together, and error in
reading the graph produces considerable scatter in y1. Once
several values of y1 have been determined, line D is drawn,
and parameters A1 and b1 are estimated.

This technique can be extended to several exponentials.
However it becomes increasingly difficult to extract mean-
ingful parameters as more exponentials are used, because the
estimated parameters for the short-lived terms are very sensi-
tive to the initial guess for the parameters of the longest-lived
term. Fig. 2.6 suggests that estimating the parameters for the
longest-lived term may be difficult because of the potentially
large error bars associated with the data for small values
of y. For a discussion of this problem, see Riggs (1970,
pp. 146–163). A more modern and better way to fit multi-
ple exponentials is the technique of nonlinear least squares.
This is discussed in Sect. 11.2.

2.10 The Logistic Equation

Exponential growth cannot go on forever. This fact is often
ignored by economists and politicians. Albert Bartlett has
written extensively on this subject. You can find several ref-
erences in The American Journal of Physics and The Physics
Teacher. See the summary in Bartlett (2004).

Sometimes a growing population will level off at some
constant value. Other times the population will grow and
then crash. One model that exhibits leveling off is the logistic
model, described by the differential equation

dy

dt
= b0y

(
1 − y

y∞

)
, (2.28)

where b0 and y∞ are constants. This equation has constant
solutions y = 0 and y = y∞. If y 	 y∞, then the equation
is approximately dy/dt = b0y and y grows exponentially.
As y becomes larger, the term in parentheses reduces the rate
of increase of y, until y reaches the saturation value y∞. This
might happen, for example, as the population begins to con-
sume a significant fraction of the food supply, causing the
birth rate to decrease or the mortality rate to increase.

If the initial value of y is y0, the solution of Eq. 2.28 is

y(t) = 1
1

y∞
+
(

1

y0
− 1

y∞

)
e−b0t

(2.29)

= y0y∞
y0 + (y∞ − y0)e

−b0t
.
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Fig. 2.16 Plot of the solution of the logistic equation when y0 = 0.1,
y∞ = 1.0, b0 = 0.0667. Exponential growth with the same values of
y0 and b0 is also shown

You can easily verify that y(0) = y0 and y(∞) = y∞. A plot
of the solution is given in Fig. 2.16, along with exponential
growth with the same value of b0.

Another way to think of Eq. 2.28 is that it has the form
dy/dt = b(y)y, where b(y) = b0(1 − y/y∞) is now a
function of the dependent variable y instead of the indepen-
dent variable t . As y grows toward the asymptotic value,
the growth rate b(y) decreases linearly to zero. The logistic
model was an early and very important model for popula-
tion growth. It provides good fits in a few cases, but there are
now many more sophisticated models in population biology
(Murray 2001) and bacterial growth (Hagen 2010).

2.11 Log–log Plots, Power Laws, and Scaling

This section considers the use of plots in which both scales
are logarithmic: log–log plots. They are useful when x and y

are related by the power law

y = Bxn. (2.30)

Notice the difference between this and the exponential func-
tion: here the independent variable x is raised to a constant
power, while in the exponential case, x (or t) is in the expo-
nent. It also leads to a discussion of scaling, whereby simple
physical arguments lead to important conclusions about the
variations between species in size, shape, metabolic rate, and
the like.

0.1

2

3

4
5
6
7

1

2

3

4
5
6
7

10

y

0.1
2 3 4 5 6 7

1
2 3 4 5 6 7

10

 y = x1/2 

 y = x  y = x2
  y = x-1

 

Fig. 2.17 Log–log plots of y = xn for different values of n. When
x = 1, y = 1 in every case

2.11.1 Log–log Plots and Power Laws

By taking logarithms of both sides of Eq. 2.30, we get

log y = log B + n log x. (2.31)

This is a linear relationship between u = log y and v =
log x:

u = const + nv. (2.32)

Therefore a plot of u vs v is a straight line with slope n.
The slope can be positive or negative and need not be an
integer. Figure 2.17 shows plots of y = x, y = x2, y = x1/2,
and y = x−1. The slope can be determined from the graph
by taking �u/�v. The value of B is determined either by
substituting particular values of y and x in Eq. 2.30 after n

is known, or by determining the value of y when x = 1,
in which case xn = 1 for any value of n, so n need not be
known.

Figure 2.18 shows how the curves change when B is
changed while n = 1. The curves are all parallel to each
other. Multiplying by B is equivalent to adding a constant to
log y.

If the expression is not of the form y = Bxn but has an
added term, it will not plot as a straight line on log–log paper.
Figure 2.18 also shows a plot of y = x + 1, which is not
a straight line. (Of course, for very large values of x, log
(x +1) becomes nearly indistinguishable from log x, and the
line appears straight.)

When the slope is constant, n can be determined from the
slope �u/�v measured with a ruler on the log–log paper.
When determining the slope in this way one must be sure
that the length of a cycle is the same in each direction on the
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Fig. 2.18 Log–log plots of y = Bx, showing how the curves shift on
the paper as B changes. Since n = 1 for all the curves, they all have the
same slope. There is also a plot of y = x + 1 to show that a polynomial
does not plot as a straight line

graph paper. To repeat the warning: it is easy to get a rough
idea of the exponent from inspection of the slope of the log–
log plot in Fig. 2.17 because on commercial log–log graph
paper, the distance spanned by a decade or cycle is the same
on both axes. Some magazines routinely show log–log plots
in which the distance spanned by a decade is not the same
on both axes. Moreover, commercial graphing software does
not impose this constraint on log–log plots, so it is becoming
less and less likely that you can determine the exponent by
glancing at the plot. Be careful!

When using a spreadsheet or other graphing software, it
is often useful to make an extra column that contains the cal-
culated variable ycalc = Axm with the values for A and m

stored in two cells of the spreadsheet. If you plot this column
as a line, and your real data as points without a line, then you
can change the parameters while inspecting the graph to find
the values that give the best fit.

An example of the use of a log–log plot is Poiseuille flow
of fluid through a tube vs tube radius when the pressure gra-
dient along the tube is constant (Problem 39). It was shown
in Chap. 1 that an r4 dependence is expected.

2.11.2 Food Consumption, Basal Metabolic
Rate, and Scaling

Consider the relation of daily food consumption to body
mass. This will introduce us to simple scaling arguments.
As a first model, we might suppose that each kilogram of
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Fig. 2.19 Plot of daily food requirement F and height H vs mass M

for growing children. (Data are from Kempe et al. 1970, p. 90)

tissue has the same metabolic requirement, so that food
consumption should be proportional to body mass. However,
there is a problem with this argument. Most of the food that
we consume is converted to heat. The various mechanisms
to lose heat—radiation, convection, and perspiration—are
all roughly proportional to the surface area of the body
rather than its mass. (This statement neglects the fact that
considerable evaporation takes place through the lungs
and that the body can control the rate of heat loss through
sweating and shivering.) If all persons were the same shape,
then the total surface area would be proportional to H 2,
where H is the height. The total volume and mass would be
proportional to H 3, so H would be proportional to M1/3.
Therefore the surface area would be proportional to (M1/3)2

or M2/3. (See Problem 44 for a discussion of other possible
dependences of surface area on mass.) Figure 2.19 plots H

and the total daily food requirement F vs body mass M for
growing children (Kempe et al. 1970, p. 90).

Neither of the models proposed above fits the data very
well. At early ages, H is more nearly proportional to M0.62

than to M1/3. For older children, when the shape of the body
has stopped changing, an M0.33 dependence does fit better.
This better fit occurs for masses greater than 23 kg, which
correspond to ages over 6 years. The slope of the F(M)

curve is 0.75. This is less than the 1.0 of the model that food
consumption is proportional to the mass and greater than the
0.67 of the model that food consumption is proportional to
surface area.

This 3
4 -power dependence is remarkable because it is

seen across many species, from one-celled organisms to
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Fig. 2.20 Plot of resting metabolic rate vs. body mass for many differ-
ent organisms. (Graph is from R. H. Peters 1983. Modified from A. M.
Hemmingsen 1960). Used with permission

large mammals. It is called Kleiber’s law. Peters (1983)
quotes work by Hemmingsen (1960) that shows the stan-
dard metabolic rates for many species can be fitted by the
following. The standard metabolic rate is in watts and mass
in kilograms. (Standard means as close to resting or basal as
possible.) For unicellular organisms at 20 ◦C,

Runicellular = 0.018M0.751. (2.33a)

The range of masses extended from 10−15 to 10−6 kg. For
poikilotherms (organisms such as fish whose body tempera-
ture is the same as the surroundings) at 20 ◦C (masses from
10−8 to 102 kg),

Rpoikilotherm = 0.14M0.751, (2.33b)

and for homeotherms (animals that can maintain their
body temperature independent of the surroundings) at 39 ◦C
(masses from 10−2 to 103 kg),

Rhomeotherm = 4.1M0.751. (2.33c)

Peters’ graph is shown in Fig. 2.20.
A number of models have been proposed to explain a 3

4 -
power dependence (McMahon 1973; Peters 1983; West et al.
1999; Banavar et al. 1999). West and his coworkers argue
that the 3

4 -power law is universal (Brown et al. 2004; West
and Brown 2004). They derive it from a model that supplies
nutrients through a branching network that reaches all parts
of the organism, minimizes the energy required for distribu-
tion, and ends in capillaries (or terminal xylem in plants) that
are all the same size. Whether it is universal is still debated
(White and Seymour 2003; Glazier 2005).

Symbols Used in Chap. 2
Symbol Use Units First

used
page

a Rate of input of a substance s−1 41
b, b0 Rate of growth or decay s−1, h−1 33
c1, c2 Constants 36
f Fraction 35
m, n Exponent in power–law relationship 43
t Time s 34
u Logarithm of dependent variable 36
v Logarithm of independent variable 43
x General independent variable 35
y General dependent variable 33
y Amount of substance in plasma kg, mg 40
x0,y0 Initial value of x or y 33
y∞ Saturation value of y 42
A Constant 42
B Constant 43
C Concentration kg m−3,

etc.
40

F Food requirement kcal day−1 44
H Body height m 44
K Clearance m3 s−1 40
M Body mass kg 44
N Number of compoundings per year 34
Q Flow through chemostat m3 s−1 40
R Standard metabolic rate W 45
T1/2 Half-life s, etc. 35
T2 Doubling time s 36
V Volume m3 40
X10 Change in x for a factor-of-10 change

in y

36

X100 Change in x for a factor-of-100
change in y

37

Problems

Section 2.1

Problem 1. Suppose that you are 20 years old and have an
annual income of $20,000. You plan to work for 40 years. If
inflation takes place at a rate of 3 % per year, what income
would you need at age 60 to have the same buying power you
have now? Ignore taxes. Make the calculation assuming that
(a) inflation is 3 % and occurs once a year and (b) inflation is
continuous but at a 3 % annual rate.
Problem 2. The number e is defined by limn→∞(1+1/n)n.

(a) Calculate values of (1 + 1/n)n for n = 1, 2, 4, 8, and
16.

(b) Use the binomial formula (1 + a)n = 1 + na +
n(n−1)

2! a2 + n(n−1)(n−2)
3! a3 + · · · to obtain a series for ex =

limn→∞(1 + x/n)n. [See also Appendix D, Eq. D.3.]
Problem 3. A child with acute lymphocytic leukemia (ALL)
has approximately 1012 leukemic cells when the disease is
clinically apparent.
(a) If a cell is about 8 μm in diameter, estimate the total

mass of leukemic cells.
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(b) Cure requires killing every single cell. The doubling
time for the cells is about 5 days. If all cells were killed
except for one, how long would it take for the disease to
become apparent again?

(c) Suppose that chemotherapy reduces the number of cells
to 109 and there are no changes of ALL cell proper-
ties (no mutations). How long a remission would you
expect? What if the number were reduced to 106?

Problem 4. Suppose that tumor cells within the body repro-
duce at rate r , so that the number is given by y = y0e

rt . Each
time a chemotherapeutic agent is given, it destroys a fraction
f of the cells then existing. Make a semilog plot showing y

as a function of time for several administrations of the drug,
separated by time T . What different cases must you consider
for the relation among f , T , and r?
Problem 5. An exponentially growing culture of bacteria in-
creases from 106 to 5 × 108 cells in 6 h. What is the time
between successive cell divisions if there is no cell mortality?
Problem 6. The following data on railroad tracks were
obtained from R. H. Romer (1991).

Year Miles of track
1860 30,626
1870 52,922
1880 93,262
1890 166,703

(a) What is the doubling time?
(b) Estimate the surface area of the contiguous USA. As-

sume that a railroad roadbed is 7-m wide. In what year
would an extrapolation predict that the surface of the
USA would be completely covered with railroad track?

Section 2.2

Problem 7. A dose D of drug is given that causes the plasma
concentration to rise from 0 to C0. The concentration then
falls according to C = C0e

−bt . At time T , what dose must be
given to raise the concentration to C0 again? What will hap-
pen if the original dose is administered over and over again
at intervals of T ?
Problem 8. Consider the atmosphere to be at constant tem-
perature but to have a pressure p that varies with height
y. A slab between y and y + dy has a different pressure
on the top than on the bottom because of the weight of
the air in the slab. (The weight of the air is the number of
molecules N times mg, where m is the mass of a molecule
and g is the gravitational acceleration.) Use the ideal gas law,
pV = NkBT (where kB is the Boltzmann constant and T ,
the absolute temperature, is constant), and the fact that the
air is in equilibrium to write a differential equation for p as

a function of y. The equation should be familiar. Show that
p(y) = Ce−mgy/kBT .
Problem 9. The mean life of a radioactive substance is
defined by the equation

τ = − ∫∞
0 t (dy/dt) dt

− ∫∞
0 (dy/dt) dt

.

Show that if y = y0e
−bt , then τ = 1/b.

Section 2.3

Problem 10. R. Guttman (1966) measured the temperature
dependence of the current pulse necessary to excite the squid
axon. She found that for pulses shorter than a certain length
τ , a fixed amount of electric charge was necessary to make
the nerve fire; for longer pulses, the current was fixed. This
suggests that the axon integrates the current for a time τ

but no longer. The following data are for the integrating
time τ vs temperature T (◦C). Find an empirical exponential
relationship between T and τ .

T (◦C) τ (ms)
5 4.1
10 3.4
15 1.9
20 1.4
25 0.7
30 0.6
35 0.4

Problem 11. A normal rabbit was injected with 1 cm3 of
Staphylococcus aureus culture containing 108 organisms. At
various later times, 0.2 cm3 of blood was taken from the
rabbit’s ear. The number of organisms per cm3 was calcu-
lated by diluting the material, smearing it on culture plates,
and counting the number of colonies formed. The results are
shown below. Plot these data and see if they can be fit by a
single exponential. Can you also estimate the blood volume
of the rabbit?

t (min) Bacteria (cm−3)
0 5 × 105

3 2 × 105

6 5 × 104

10 7 × 103

20 3 × 102

30 1.7 × 102

Section 2.4

Problem 12. All members of a certain population are born
at t = 0. The death rate in this population (deaths per unit
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population per unit time) is found to increase linearly with
age t : (death rate) = a+bt . Find the population as a function
of time if the initial population is y0.
Problem 13. The accompanying table gives death rates (in
yr−1) as a function of age. Plot these data on linear graph
paper and on semilog paper. Find a region over which the
death rate rises approximately exponentially with age, and
determine parameters to describe that region.

Age Death rate Age Death rate
0 0.000 863 45 0.005 776
5 0.000 421 50 0.008 986

10 0.000 147 55 0.013 748
15 0.001 027 60 0.020 281
20 0.001 341 65 0.030 705
25 0.001 368 70 0.046 031
30 0.001 697 75 0.066 196
35 0.002 467 80 0.101 443
40 0.003 702 85 0.194 197

Problem 14. Suppose that the amount of a resource at time
t is y(t). At t = 0, the amount is y0. The rate at which it
is consumed is r = −dy/dt . Let r = r0e

bt , that is, the rate
of use increases exponentially with time. (For example, until
recently the world use of crude oil had been increasing about
7 % per year since 1890.)
(a) Show that the amount remaining at time t is y(t) = y0 −

(r0/b)(ebt − 1).
(b) If the present supply of the resource were used up at con-

stant rate r0, it would last for a time Tc. Show that when
the rate of consumption grows exponentially at rate b,
the resource lasts a time Tb = (1/b) ln(1 + bTc).

(c) An advertisement in Scientific American, September
1978, p. 181, said, “There’s still twice as much gas un-
derground as we’ve used in the past 50 years—at our
present rate of use, that’s enough to last about 60 years.”
Calculate how long the gas would last if it were used at
a rate that increases 7 % per year.

(d) If the supply of gas were doubled, how would the answer
to part (c) change?

(e) Repeat parts (c) and (d) if the growth rate is 3 % per year.
Problem 15. When we are dealing with death or compo-
nent failure, we often write Eq. 2.17 in the form y(t) =
y0 exp

[
− ∫ t

0 m(t ′)dt ′
]

and call m(t) the mortality function.

Various forms for the mortality function can represent fail-
ure of computer components, batteries in pacemakers, or
the death of organisms. (This is not the most general possi-
ble mortality model. For example, it ignores any interaction
between organisms, so it cannot account for effects such as
overcrowding or a limited supply of nutrients.)
(a) For human populations, the mortality function is often

written as m(t) = m1e
−b1t + m2 + m3e

+b3t . What sort
of processes does each of these terms represent?

(b) Assume that m1 and m2 are zero. Then m(t) is called the
Gompertz mortality function. Obtain an expression for
y(t) with the Gompertz mortality function. Time tmax

is sometimes defined to be the time when y(t) = 1. It
depends on y0. Obtain an expression for tmax.

Problem 16. The incidence of a disease is the number of
new cases per unit time per unit population (or per 100,000).
The prevalence of the disease is the number of cases per
unit population. For each situation below, the size of the gen-
eral population remains fixed at the constant value y, and the
disease has been present for many years.
(a) The incidence of the disease is a constant, i cases per

year. Each person has the disease for a fixed time of
T years, after which the person is either cured or dies.
What is the prevalence p? Hint: the number who are sick
at time t is the total number who became sick between
t − T and t .

(b) The patients in part (a) who are sick die with a constant
death rate b. What is the prevalence?

(c) A new epidemic begins at t = 0, and the incidence in-
creases exponentially with time: i = i0e

kt . What is the
prevalence if each person has the disease for T years?

Section 2.5

Problem 17. The creatinine clearance test measures a pa-
tient’s kidney function. Creatinine is produced by muscle at
a rate p g h−1. The concentration in the blood is C g l−1. The
volume of urine collected in time T (usually 24 h) is V l. The
creatinine concentration in the urine is U g l−1. The clear-
ance is K . The plasma volume is Vp. Assume that creatinine
is stored only in the plasma.
(a) Draw a block diagram for the process and write a

differential equation for C.
(b) Find an expression for the creatinine clearance K in

terms of p and C when C is not changing with time.
(c) If C is constant, all creatinine produced in time T ap-

pears in the urine. Find K in terms of C, V , U , and
T .

(d) If p were somehow doubled, what would be the new
steady-state value of C? What would be the time con-
stant for change to the new value?

Problem 18. A liquid is injected in muscle and spreads
throughout a spherical volume V = 4πr3/3. The volume
is well supplied with blood, so that the liquid is removed
at a rate proportional to the remaining mass per unit vol-
ume. Let the mass be m and assume that r remains fixed.
Find a differential equation for m(t) and show that m decays
exponentially.
Problem 19. A liquid is injected as in Problem 18, but this
time a cyst is formed. The rate of removal of mass is pro-
portional to both the pressure of liquid within the cyst, and
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to the surface area of the cyst, which is 4πr2. Assume that
the cyst shrinks so that the pressure of liquid within the cyst
remains constant. Find a differential equation for the rate of
mass removal and show that dm/dt is proportional to m2/3.
Problem 20. The following data showing ethanol concen-
tration in the blood vs time after ethanol ingestion are from
Bennison and Li (1976, pp. 9–13). Plot the data and discuss
the process by which alcohol is metabolized.

t (min) Ethanol concentration (mg dl−1)
90 134

120 120
150 106
180 93
210 79
240 65
270 50

Problem 21. Consider the following two-compartment
model. Compartment 1 is damaged myocardium (heart mus-
cle). Compartment 2 is the blood of volume V . At t = 0,
the patient has a heart attack and compartment 1 is created.
It contains q molecules of some chemical that was released
by the dead cells. Over the next several days, the chemi-
cal moves from compartment 1 to compartment 2 at a rate
i(t), such that q = ∫∞

0 i(t)dt . The amount of substance in
compartment 2 is y(t) and the concentration is C(t). The
only mode of removal from compartment 2 is clearance with
clearance constant K .
(a) Write a differential equation for C(t) that may also

involve i(t).
(b) Integrate the equation and show that q can be determined

by numerical integration if C(t) and K are known.
(c) Show that volume V need not be known if C(0) =

C(∞).

Section 2.7

Problem 22. The radioactive nucleus 64Cu decays indepen-
dently by three different paths. The relative decay rates of
these three modes are in the ratio 2:2:1. The half-life is
12.8 h. Calculate the total decay rate b, and the three partial
decay rates b1, b2, and b3.
Problem 23. The following data were taken from Berg et al.
(1982). At t = 0, a 70-kg subject was given an intravenous
injection of 200 mg of phenobarbital. The initial concentra-
tion in the blood was 6 mg l−1. The concentration decayed
exponentially with a half-life of 110 h. The experiment was
repeated, but this time the subject was fed 200 g of activated
charcoal every 6 h. The concentration of phenobarbital again
fell exponentially, but with a half-life of 45 h.
(a) What was the volume in which the phenobarbital was

distributed?

(b) What was the clearance in the first experiment?
(c) What was the clearance due to charcoal?

Section 2.8

Problem 24. You are treating a severely ill patient with an
intravenous antibiotic. You give a loading dose D mg, which
distributes immediately through blood volume V to give a
concentration C mg dl−1 (1 dl = 0.1 l). The half-life of this
antibiotic in the blood is T h. If you are giving an intravenous
glucose solution at a rate R ml h−1, what concentration of
antibiotic should be in the glucose solution to maintain the
concentration in the blood at the desired value?
Problem 25. The solution to the differential equation
dy/dt = a − by for the initial condition y(0) = 0 is
y = (a/b)(1 − e−bt ). Plot the solution for a = 5 g min−1

and for b = 0.1, 0.5, and 1.0 min−1. Discuss why the final
value and the time to reach the final value change as they do.
Also make a plot for b = 0.1 and a = 10 to see how that
changes the situation.
Problem 26. Derive an approximate expression for
(a/b)

(
1 − e−bt

)
which is accurate for small times (t 	

1/b). Use the Taylor expansion for an exponential given in
Appendix D.
Problem 27. We can model the repayment of a mortgage
with a differential equation. Suppose that y(t) is the amount
still owed on the mortgage at time t , the rate of repayment
per unit time is a, b is the interest rate, and the initial amount
of the mortgage is y0.
(a) Find the differential equation for y(t).
(b) Try a solution of the form y(t) = a/b + Cebt , where

C is a constant to be determined from the initial condi-
tions. Find C, plot the solution, and determine the time
required to pay off the mortgage.

Problem 28. When an animal of mass m falls in air, two
forces act on it: gravity, mg, and a force due to air friction.
Assume that the frictional force is proportional to the speed
v.
(a) Write a differential equation for v based on Newton’s

second law, F = m(dv/dt).
(b) Solve this differential equation (hint: compare your

equation to Eq. 2.25).
(c) Assume that the animal is spherical, with radius a and

density ρ. Also, assume that the frictional force is pro-
portional to the surface area of the animal. Determine
the terminal speed (speed of descent in steady state) as
a function of a.

(d) Use your result in part (c) to interpret the following
quote by J. B. S. Haldane (1985): “You can drop a
mouse down a thousand-yard mine shaft; and arriving
at the bottom, it gets a slight shock and walks away. A
rat is killed, a man is broken, a horse splashes.”
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Problem 29. In Problem 28, we assumed that the force of
air friction is proportional to the speed v. For flow at high
Reynolds numbers, a better approximation is that the force is
−kv2.
(a) Write the differential equation for v as a function of t .
(b) This differential equation is nonlinear because of the v2

term and thus difficult to solve analytically. However,
the terminal speed can easily be obtained directly from
the differential equation by setting dv/dt = 0. Find the
terminal speed as a function of a (defined in Problem
28).

(c) Verify that v(t) = √
mg/k tanh

(√
kg/mt

)
is a solution.

Problem 30. A drug is infused into the body through an in-
travenous drip at a rate of 100 mg h−1. The total amount of
drug in the body is y. The drug distributes uniformly and
instantaneously throughout the body in a compartment of
volume V = 18 l. It is cleared from the body by a single
exponential process. In the steady state, the total amount in
the body is 200 mg.
(a) At noon (t = 0), the intravenous line is removed. What

is y(t) for t > 0?
(b) What is the clearance of the drug?

Section 2.9

Problem 31. You are given the following data:

x y x y

0 1.000 5 0.444
1 0.800 6 0.400
2 0.667 7 0.364
3 0.571 8 0.333
4 0.500 9 0.308

10 0.286

Plot these data on semilog graph paper. Is this a single expo-
nential? Is it two exponentials? Plot 1/y vs x. Does this alter
your answer?
Problem 32. Cells can repair DNA damage caused by x-ray
exposure (see Sect. 16.9). Wang et al. (2001) found that the
amount of damage is characterized by two time constants.
Assume the DNA damage, D, as a function of time, t , is
given by the following data

t (h) D(%) t (h) D(%)
0 100 1.5 16
0.25 46 2 14
0.50 28 4 9.0
0.75 21 6 5.8
1.0 18 8 3.7

Plot the data on semilog paper. Fit the data to Eq. 2.27 by
eye or using a spreadsheet and determine A1, A2, b1, and b2.

Note that the data are normalized to 100 % at t = 0. What
does this mean in terms of A1 and A2?

Section 2.10

Problem 33. Suppose that the rate of consumption of a re-
source increases exponentially. (This might be petroleum, or
the nutrient in a bacterial culture.) During the first doubling
time, the amount used is 1 unit. During the second doubling
time, it is 2 units, the next 4, etc. How does the amount con-
sumed during a doubling time compare to the total amount
consumed during all previous doubling times?
Problem 34. Suppose that the rate of growth of y is de-
scribed by dy/dt = b(y)y. Expand b(y) in a Taylor’s
series and relate the coefficients to the terms in the logistic
equation.
Problem 35. Verify that the solution y(t) in Eq. 2.29 obeys
the differential Eq. 2.28.
Problem 36. In the logistic model (Eq. 2.28), what value of
y corresponds to the maximum rate of change of y?
Problem 37. The consumption of a finite resource is
often modeled using the logistic equation. Let y(t) be the
cumulative amount of a resource consumed and y∞ be
the total amount that was initially available at t = −∞.

Model the rate of consumption using Eq. 2.29 over the range
−∞ < t < ∞.
(a) Set y0 = y∞/2, so that the zero of the time axis

correponds to when half the resource has been used.
Show that this simplifies Eq. 2.29.

(b) Differentiate y(t) to find an expression for the rate
of consumption. Sketch plots of dy/dt vs t on linear
and semilog graph paper. When does the peak rate of
consumption occur?

When this model is applied to world oil consumption, the
maximum is called Hubbert’s peak (Deffeyes 2008).
Problem 38. Consider a classic predator–prey problem. Let
the number of foxes be F and the number of rabbits be R.
The rabbits eat grass, which is plentiful. The foxes eat only
rabbits. The number of foxes and rabbits can be modeled by
the Lotka–Volterra equations

dR

dt
= aR − bRF

dF

dt
= −cF + dRF.

(a) Describe the physical meaning of each term on the right-
hand side of each equation. What does each of the
constants a, b, c, and d denote?

(b) Solve for the steady-state values of F and R.
These differential equations are difficult to solve because

they are nonlinear (see Chap. 10). Typically, R and F oscil-
late about the steady-state solutions found in (b). For more
information, see Murray (2001).
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Section 2.11

Problem 39. Plot the following data for Poiseuille flow on
log–log graph paper. Fit the equation i = CRn

p to the data by
eye (or by trial and error using a spread sheet), and determine
C and n.

Rp(μm) i(μm3s−1)

5 0.000 10
7 0.000 38
10 0.001 6
15 0.008 1
20 0.026
30 0.13
50 1.0

Problem 40. Below are the molecular weights and radii
of some molecules. Use log–log graph paper to develop an
empirical relationship between them.

Substance M R (nm)
Water 18 0.15
Oxygen 32 0.20
Glucose 180 0.39
Mannitol 180 0.36
Sucrose 390 0.48
Raffinose 580 0.56
Inulin 5 000 1.25
Ribonuclease 13,500 1.8
β-lactoglobin 35,000 2.7
Hemoglobin 68,000 3.1
Albumin 68,000 3.7
Catalase 250,000 5.2

Problem 41. How well does Eq. 2.33c explain the data of
Fig. 2.19? Discuss any differences.
Problem 42. Compare the mass and metabolic requirements
(and hence waste output, including water vapor) of 180 peo-
ple each weighing 70 kg with 12,600 chickens of average
mass 1 kg.
Problem 43. Figure 2.19 shows that in young children,
height is more nearly proportional to M0.62 than to M1/3.
Find pictures of children and adults and compare ratios of
height to width, to see what the differences are.
Problem 44. Consider three models of an organism. The first
is a sphere of radius R. The second is a cube of length L.
These are crude models for animals. The third is a broad leaf
of surface area A on each side and thickness t . Assume all
have density ρ. In each case, calculate the surface area S as
a function of mass, M . Ignore the surface area of the edge of
the leaf. (For a comparison of scaling in leaves and animals,
see Reich (2001). He shows that for broad leaves, S ∝ M1.1.)
Problem 45. If food consumption is proportional to M3/4

across species, how does the food consumption per unit

mass scale with mass? Qualitatively compare the eating
habits of hummingbirds to eagles and mice to elephants. (See
Schmidt-Nielsen 1984, pp. 62–64.)
Problem 46. In Problem 45, you found how the specific
metabolic rate (food consumption per unit mass) varies with
mass. If all animal heart volumes and blood volumes are pro-
portional to M , then the only way for the heart to increase the
oxygen delivery to the body is by increasing the frequency of
the heart rate (Schmidt-Nielsen 1984, pp. 126–150).
(a) Using the result from Problem 45, if a 70 kg man has a

heart rate of 80 beats min−1, determine the heart rate of
a guinea pig (M = 0.5 kg).

(b) To a first approximation, all hearts beat about
800,000,000 times in a lifetime. A 30-g mouse lives
about 3 years. Estimate the life span of a 3000-kg
elephant.

(c) Humans live longer than what their mass would indi-
cate. Calculate the life span of a 70-kg human based on
scaling, and compare it to a typical human life span.

Problem 47. Let us examine how high animals can jump
(Schmidt-Nielsen 1984, pp. 176–179). Assume that the en-
ergy output of the jumping muscle is proportional to the body
mass, M . The gravitational potential energy gained upon
jumping to a height h is Mgh (g = 9.8 m s−2). If a 3-g lo-
cust can jump 60 cm, how high can a 70-kg human jump?
Use scaling arguments.
Problem 48. In Problem 47, you should have found that all
animals can jump to about the same height (approximately
0.6 m), independent of their mass M .
(a) Equate the kinetic energy at the bottom of the jump

(Mv2/2, where v is the“take-off speed”) to the poten-
tial energy Mgh at the top of the jump to find how the
take-off speed scales with mass.

(b) Calculate the take-off speed.
(c) In order to reach this speed, the animal must accelerate

upward over a distance L. If we assume a constant ac-
celeration a, then a = v2/(2L). Assume L scales as the
linear size of the animal (and assume all animals are ba-
sically the same shape but different size). How does the
acceleration scale with mass?

(d) For a 70-kg human, L is about 1/3 m. Calculate the
acceleration (express your answer in terms of g).

(e) Use your result from part (c) to estimate the acceleration
for a 0.5-mg flea (again, express your answer in terms of
g).

(f) Speculate on the biological significance of the result in
part (e) (See Schmidt-Nielsen 1984, pp. 180–181).
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